%I #4 Nov 21 2016 09:11:52
%S 0,0,0,1,20,1,15,264,264,15,90,2550,9354,2550,90,357,22267,201539,
%T 201539,22267,357,1107,166762,3576730,11454780,3576730,166762,1107,
%U 2907,1046418,58069125,514122657,514122657,58069125,1046418,2907,6765,5586207
%N T(n,k)=Number of nXk 0..2 arrays with rows and columns in lexicographic nondecreasing order but with exactly two mistakes.
%C Table starts
%C .....0.........0.............1................15....................90
%C .....0........20...........264..............2550.................22267
%C .....1.......264..........9354............201539...............3576730
%C ....15......2550........201539..........11454780.............514122657
%C ....90.....22267.......3576730.........514122657...........62922179364
%C ...357....166762......58069125.......20086951472.........6584300364020
%C ..1107...1046418.....859516239......724313811311.......615691843257769
%C ..2907...5586207...11336482734....24378309172117.....53477639726024161
%C ..6765..25997719..132278417831...757386980723842...4387410446730955493
%C .14355.107862842.1373129978107.21490393664858691.339567886171232998387
%H R. H. Hardin, <a href="/A278414/b278414.txt">Table of n, a(n) for n = 1..127</a>
%F Empirical for column k:
%F k=1: [polynomial of degree 8]
%F k=2: [polynomial of degree 26]
%F k=3: [polynomial of degree 80]
%e Some solutions for n=3 k=4
%e ..1..0..1..2. .0..0..0..0. .0..1..2..0. .0..1..1..2. .1..2..1..2
%e ..0..0..0..2. .1..1..0..1. .0..0..0..1. .0..1..0..2. .0..2..1..0
%e ..2..2..2..1. .0..2..1..1. .2..2..0..1. .2..0..0..2. .0..2..1..1
%Y Column 1 is A005716(n+1).
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, Nov 21 2016