OFFSET
0,27
COMMENTS
Number of partitions of n into parts larger than 1 and congruent to 1 mod 6.
LINKS
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^(6*k+1)).
a(n) ~ Pi^(1/6) * Gamma(1/6) * exp(sqrt(n)*Pi/3) / (24*sqrt(3)*n^(13/12)). - Vaclav Kotesovec, Oct 10 2016
EXAMPLE
a(26) = 2, because we have [19, 7] and [13, 13].
MAPLE
N:= 100:
G:= 1/mul(1-x^m, m=7..N, 6):
S:= series(G, x, N+1):
seq(coeff(S, x, j), j=0..N); # Robert Israel, Jan 23 2019
MATHEMATICA
CoefficientList[Series[(1 - x)/QPochhammer[x, x^6], {x, 0, 100}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 10 2016
STATUS
approved