[go: up one dir, main page]

login
A277273
Numbers k such that sigma(k) = sigma(k - d(k)).
2
55, 110, 119, 188, 238, 280, 323, 352, 646, 748, 1007, 1780, 2014, 2016, 2508, 2589, 2684, 4187, 5178, 5963, 6900, 8183, 8374, 11663, 11926, 12371, 16366, 23326, 24742, 28780, 30092, 31660, 33512, 33592, 34804, 35728, 36252, 36685, 39917, 40068
OFFSET
1,1
COMMENTS
If a(n) is odd then 2*a(n) is also in the sequence.
If p, p+2, 3p+2 and 3p+8 are primes, then (p+2)*(3p+2) is in the sequence. Dickson's conjecture implies that there are infinitely many such p. Terms of this form include 55, 119, 1007, 118007, 6120407, 8350007, 13083407, 51875207. - Robert Israel, Nov 20 2016
LINKS
EXAMPLE
A000203(55) = 72 and A000203(72 - A000005(55)) = A000203(55 - 4) = A000203(51) = 72, therefore 55 is in the sequence.
MAPLE
select(n -> numtheory:-sigma(n) = numtheory:-sigma(n - numtheory:-tau(n)), [$2..10^5]); # Robert Israel, Nov 20 2016
MATHEMATICA
Select[Range[10^5], DivisorSigma[1, #]==DivisorSigma[1, #-DivisorSigma[0, #]]&]
PROG
(PARI) isok(n) = sigma(n) == sigma(n - numdiv(n)); \\ Michel Marcus, Oct 09 2016
(Magma) [n: n in [3..50000] | DivisorSigma(1, n) eq DivisorSigma(1, n-DivisorSigma(0, n))]; // Vincenzo Librandi, Nov 21 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ivan N. Ianakiev, Oct 08 2016
STATUS
approved