[go: up one dir, main page]

login
A276767
Let A_n be the sequence defined in the same way as A159559 but with initial term prime(n), n>=2; a(n) is the smallest m such that for i>=2, A_n(i) - A_2(i) <= A_n(m) - A_2(m).
4
2, 5, 17, 17, 17, 359, 359, 359, 163, 163, 163, 163, 163, 163, 163, 163, 163, 448, 448, 448, 448, 448, 448, 71, 71, 71, 17, 17, 443, 443, 443, 443, 443, 443, 37, 37, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789
OFFSET
2,1
COMMENTS
By definition, A_2 = A159559.
EXAMPLE
Let n=4. Set r(i)= A_4(i)- A_2(i), i>=2. Then, by the definition of A_4 and A_2, we have
r(2)=7-3=4,
r(3)=11-5=6, further,
r(4)=...=r(12)=6,
r(13)=r(14)=10,
r(15)=r(16)=11,
r(17)=r(18)=14,
r(19)=...=r(22)=12,
r(23)=...r(26)=10,
r(27)=9,
r(28)=8,
r(29)=...=r(32)=6,
r(33)=...=r(36)=7,
r(37)=r(38)=8,
r(39)=r(40)=7,
r(41)=r(42)=4,
r(43)=r(44)=2,
r(45)=r(46)=1
r(n)=0, n>=47.
So max r(i)=14 and the smallest m such that r(m)=14 is 17.
Thus a(4)=17.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Sep 17 2016
EXTENSIONS
More terms from Peter J. C. Moses, Sep 17 2016
STATUS
approved