[go: up one dir, main page]

login
A276763
Decimal expansion of the imaginary part of a fixed point of the logarithmic integral li(z) in C.
2
2, 0, 6, 5, 9, 2, 2, 2, 0, 2, 3, 7, 0, 6, 6, 2, 1, 8, 8, 9, 8, 8, 1, 0, 4, 6, 1, 1, 2, 5, 4, 1, 0, 8, 4, 3, 0, 0, 1, 4, 2, 4, 9, 8, 5, 3, 1, 9, 0, 0, 6, 7, 3, 2, 8, 3, 8, 5, 7, 9, 1, 1, 8, 0, 4, 5, 9, 8, 8, 5, 9, 4, 9, 3, 2, 6, 0, 6, 7, 7, 7, 7, 8, 3, 5, 5, 5, 4, 5, 7, 0, 2, 8, 2, 7, 1, 5, 9, 2, 8, 4, 6, 7, 8, 6
OFFSET
1,1
COMMENTS
See A276762 for the real part, as well as detailed comments and links.
LINKS
EXAMPLE
2.06592220237066218898810461125410843001424985319006732838579118...
MATHEMATICA
RealDigits[Im[z/.FindRoot[LogIntegral[z] == z, {z, 2+I}, WorkingPrecision -> 100]]][[1]] (* Vaclav Kotesovec, Oct 30 2016 *)
PROG
(PARI) \\ z may be t_INT, t_REAL, or t_COMPLEX except 0 or 1
li(z)=
{
my(sgn=(-1)^if(real(z)<1, imag(z)<0, imag(z)<=0));
sgn*Pi*I - eint1(-log(z));
}
default(realprecision, 2100); \\ Execution:
Eps_= 4.0*10.0^(-default(realprecision));
z=1+I; zlast=0; \\ Initialize and iterate
for(k=1, 1e6, z=li(z); if(abs(z-zlast)<Eps_, break); zlast=z);
imag(z) \\ Display the result
CROSSREFS
Cf. A276762 (real part), A070769.
Sequence in context: A111520 A326040 A145419 * A338465 A142354 A105110
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Oct 28 2016
STATUS
approved