[go: up one dir, main page]

login
A276280
Number of triangular partitions of n of order 9.
1
1, 9, 45, 173, 567, 1654, 4422, 11040, 26051, 58638, 126778, 264670, 535806, 1055480, 2028884, 3814688, 7029559, 12717703, 22622719, 39618458, 68384638, 116456100, 195837008, 325462408, 534921468, 870044724, 1401226327, 2235733481, 3535790660
OFFSET
0,2
LINKS
L. Carlitz, R. Scoville, A generating function for triangular partitions, Math. Comp. 29 (1975) 67-77.
FORMULA
G.f.: 1/((1-x)^9*(1-x^3)^8*(1-x^5)^7*(1-x^7)^6*(1-x^9)^5*(1-x^11)^4*(1-x^13)^3*(1-x^15)^2*(1-x^17)).
MATHEMATICA
CoefficientList[Series[1/((1-x)^9 (1-x^3)^8 (1-x^5)^7 (1-x^7)^6 (1-x^9)^5 (1-x^11)^4 (1-x^13)^3 (1-x^15)^2 (1-x^17)), {x, 0, 50}], x]
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^9*(1-x^3)^8*(1-x^5)^7*(1-x^7)^6*(1-x^9)^5*(1-x^11)^4*(1-x^13)^3*(1-x^15)^2*(1-x^17))));
CROSSREFS
Cf. similar sequences listed in A276235.
Sequence in context: A221142 A144902 A128643 * A036826 A022574 A321948
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 01 2016
STATUS
approved