OFFSET
1,6
COMMENTS
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
EXAMPLE
a(43) = 1 since 43 = 4^0*(1+1^2+6^2) + 5*1^2.
a(45) = 1 since 45 = 4*(1+0^2+3^2) + 5*1^2.
a(237) = 1 since 237 = 4^3*(1+1^2+1^2) + 5*3^2.
a(561) = 1 since 561 = 4*(1+8^2+8^2) + 5*3^2.
a(9777) = 1 since 9777 = 4*(1+11^2+31^2) + 5*33^2.
a(39108) = 1 since 39108 = 4^2*(1+11^2+31^2) + 5*66^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[(n-4^k*(1+x^2+y^2))/5], r=r+1], {k, 0, Log[4, n]}, {x, 0, Sqrt[(n/4^k-1)/2]}, {y, x, Sqrt[n/4^k-1-x^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 04 2016
STATUS
approved