[go: up one dir, main page]

login
A275414
Triangle read by rows: T(n,k) is the number of multisets of k ternary words with a total of n letters.
3
3, 9, 6, 27, 27, 10, 81, 126, 54, 15, 243, 486, 297, 90, 21, 729, 1836, 1380, 540, 135, 28, 2187, 6561, 5994, 2763, 855, 189, 36, 6561, 23004, 24543, 13212, 4635, 1242, 252, 45, 19683, 78732, 96723, 59130, 23490, 6996, 1701, 324, 55, 59049, 265842, 368874, 253719
OFFSET
1,1
COMMENTS
Ternary analog of A209406. Multiset transformation of A000244.
FORMULA
T(n,1) = A000244(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1<k<=n.
G.f.: Product_{j>=1} (1-y*x^j)^(-3^j). - Alois P. Heinz, Apr 13 2017
EXAMPLE
3
9 6
27 27 10
81 126 54 15
243 486 297 90 21
729 1836 1380 540 135 28
2187 6561 5994 2763 855 189 36
6561 23004 24543 13212 4635 1242 252 45
19683 78732 96723 59130 23490 6996 1701 324 55
59049 265842 368874 253719 111609 36828 9846 2232 405 66
MAPLE
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
binomial(3^i+j-1, j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Apr 13 2017
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i-1, p - j]*Binomial[3^i + j - 1, j], {j, 0, Min[n/i, p]}]]]];
T[n_, k_] := b[n, n, k];
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)
CROSSREFS
Cf. A144067 (row sums), A000244 (column 1), A027468 (subdiagonal ?).
Sequence in context: A223918 A224190 A223815 * A223309 A179483 A346108
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Jul 27 2016
STATUS
approved