[go: up one dir, main page]

login
A274950
Trajectory of 0 under the morphism 0 -> 0001101, 1 -> 0011001.
1
0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0
OFFSET
0
COMMENTS
In some bar codes, the 0's and 1's on the left represent digits according to the following code:
0 = 0001101,
1 = 0011001,
2 = 0010011,
...,
9 = 0001011.
This sequence could then be loosely described as its own bar code.
(This assumes the sequence has no "guard digits" at the start, is infinite, and only uses the "left half" coding.)
EXAMPLE
Start with 0 -> 0001101, so we have 0001101. The second digit is 0, so we concatenate 0001101 which gives 00011010001101. The third digit is 0, so we concatenate 0001101 again which gives 000110100011010001101. The fourth digit is 1 so we concatenate 0011001 to get 0001101000110100011010011001, etc. - David A. Corneth, Aug 03 2017
MATHEMATICA
Nest[Flatten[# /. {0 -> {0, 0, 0, 1, 1, 0, 1}, 1 -> {0, 0, 1, 1, 0, 0, 1}}] &, 0, 3] (* Michael De Vlieger, Aug 03 2017 *)
PROG
(PARI) first(n) = {my(res = [0, 0, 0, 1, 1, 0, 1], i = 2, m = Map(Mat([0, [0, 0, 0, 1, 1, 0, 1]; 1, [0, 0, 1, 1, 0, 0, 1]]))); while(#res < n, res = concat(res, mapget(m, res[i])); i++); res} \\ David A. Corneth, Aug 03 2017
CROSSREFS
Cf. A191818.
Sequence in context: A011658 A135461 A327219 * A093383 A093384 A080584
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 04 2016
STATUS
approved