[go: up one dir, main page]

login
The exponential transform of sigma(n).
12

%I #33 Jun 12 2021 02:52:19

%S 1,1,4,14,69,367,2284,15430,115146,924555,7991892,73547322,718621516,

%T 7410375897,80405501540,914492881330,10873902417225,134808633318271,

%U 1738734267608613,23282225008741565,323082222240744379,4638440974576329923,68794595993688306903

%N The exponential transform of sigma(n).

%C The exponential transform [EXP] transforms an input sequence b(n) into the output sequence a(n). The EXP transform is the inverse of the logarithmic transform [LOG], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell's formula. For information about the logarithmic transform see A274805. The EXP transform is related to the multinomial transform, see A274760 and the second formula.

%C The definition of the EXP transform, see the second formula, shows that n >= 1. To preserve the identity LOG[EXP[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the exponential transform, otherwise information about b(0) will be lost in transformation.

%C In the a(n) formulas, see the examples, the multinomial coefficients A178867 appear.

%C We observe that a(0) = 1 and provides no information about any value of b(n), this notwithstanding it is customary to start the a(n) sequence with a(0) = 1.

%C The Maple programs can be used to generate the exponential transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A007446 and the first formula. The second program uses the definition of the exponential transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the exponential transform, see A274805.

%C Some EXP transform pairs are, n >= 1: A000435(n) and A065440(n-1); 1/A000027(n) and A177208(n-1)/A177209(n-1); A000670(n) and A075729(n-1); A000670(n-1) and A014304(n-1); A000045(n) and A256180(n-1); A000290(n) and A033462(n-1); A006125(n) and A197505(n-1); A053549(n) and A198046(n-1); A000311(n) and A006351(n); A030019(n) and A134954(n-1); A038048(n) and A053529(n-1); A193356(n) and A003727(n-1).

%D Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.

%D Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

%H Alois P. Heinz, <a href="/A274804/b274804.txt">Table of n, a(n) for n = 0..531</a>

%H M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some Canonical Sequences of Integers</a>, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]

%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.

%H Eric W. Weisstein MathWorld, <a href="http://mathworld.wolfram.com/ExponentialTransform.html">Exponential Transform</a>.

%F a(n) = Sum_{j=1..n} (binomial(n-1,j-1) * b(j) * a(n-j)), n >= 1 and a(0) = 1, with b(n) = A000203(n) = sigma(n).

%F E.g.f. exp(Sum_{n >= 1}(b(n)*x^n/n!) with b(n) = sigma(n) = A000203(n).

%e Some a(n) formulas, see A178867:

%e a(0) = 1

%e a(1) = x(1)

%e a(2) = x(1)^2 + x(2)

%e a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)

%e a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)

%e a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)

%p nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.

%p nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.

%p nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.

%t a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 22 2017 *)

%t nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Jun 08 2021 *)

%Y Cf. A274805, A274760, A178867, A000203, A007446.

%Y Cf. A177208, A177209, A006351, A197505, A144180, A256180, A033462, A198046, A134954, A145460, A188489, A005432, A029725, A124213, A002801.

%Y Cf. A036040, another version.

%K nonn

%O 0,3

%A _Johannes W. Meijer_, Jul 27 2016