[go: up one dir, main page]

login
A274511
a(n) is the only number m such that 7^(2^m) + 1 is divisible by A273948(n).
0
1, 3, 7, 4, 7, 2, 10, 9, 6, 15, 11, 14, 3, 5, 11, 12, 8, 17, 19, 5, 7, 21, 21, 4, 34, 25, 5, 9, 6, 20, 32, 17, 31, 40
OFFSET
1,2
MATHEMATICA
t = Select[Prime@ Range[3, 10^7], IntegerQ@ Log2@ MultiplicativeOrder[7, #] &]; Table[SelectFirst[Range@ 100, Divisible[7^(2^#) + 1, t[[n]]] &], {n, Length@ t}] (* Michael De Vlieger, Jun 29 2016, after Arkadiusz Wesolowski at A273948 *)
PROG
(PARI) forstep(p=3, 10^15, 2, if(!Mod(p, 7)==0, if(isprime(p), o=znorder(Mod(7, p)); x=ispower(2*o); if(2^(x-1)==o, print1(x-2, ", ")))));
CROSSREFS
Cf. A273948.
Sequence in context: A305202 A340013 A192265 * A371332 A179706 A231325
KEYWORD
nonn,more
AUTHOR
STATUS
approved