[go: up one dir, main page]

login
A274446
a(n) is the smallest composite squarefree number k such that (p+n) | (k+1) for all primes dividing k.
3
399, 299, 55, 611, 143, 5549, 39, 155, 493, 615383, 713, 3247, 119, 1304489, 1333, 31415, 2599, 749, 2183, 440153, 155, 75499, 119, 168600949, 4223, 223649, 559, 66299, 6407, 15157, 3431, 85499, 799, 31589, 7313
OFFSET
1,1
EXAMPLE
Prime factors of 399 are 3, 7 and 19. (399 + 1) / (3 + 1) = 400 / 4 = 100, (399 + 1) / (7 + 1) = 400 / 8 = 50 and (399 + 1) / (19 + 1) = 400 / 20 = 20.
Prime factors of 299 are 13 and 23. (399 + 1) / (13 + 2) = 300 / 15 = 20 and (399 + 1) / (23 + 2) = 300 / 25 = 12.
MAPLE
with(numtheory); P:=proc(q) local d, k, n, ok, p;
for k from 1 to q do for n from 2 to q do
if not isprime(n) and issqrfree(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do
if not type((n+1)/(p[d][1]+k), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); break; fi; fi; od; od; end: P(10^9);
MATHEMATICA
t = Select[Range[2000000], SquareFreeQ@ # && CompositeQ@ # &]; Table[SelectFirst[t, Function[k, AllTrue[First /@ FactorInteger@ k, Divisible[k + 1, # + n] &]]], {n, 23}] (* Michael De Vlieger, Jun 24 2016, Version 10 *)
PROG
(PARI) isok(k, n) = {if (! issquarefree(k), return (0)); vp = factor(k) [, 1]; if (#vp == 1, return (0)); for (i=1, #vp, if ((k+1) % (n+vp[i]), return (0)); ); 1; }
a(n) = {my(k=2); while (! isok(k, n), k++); k; } \\ Michel Marcus, Jun 28 2016
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Jun 23 2016
EXTENSIONS
a(24) from Giovanni Resta, Jun 23 2016
STATUS
approved