[go: up one dir, main page]

login
A274160
Number of real integers in n-th generation of tree T(i) defined in Comments.
7
1, 1, 1, 2, 3, 6, 10, 19, 33, 62, 112, 212, 394, 751, 1419, 2719, 5193, 10002, 19254, 37258, 72132, 140108, 272368, 530646, 1034798, 2021127, 3951147, 7733421, 15148711, 29702087, 58279135, 114438213, 224856997, 442099674, 869717486, 1711885120, 3371215170, 6642102554, 13092289634, 25817134600
OFFSET
0,4
COMMENTS
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x.
See A274142 for a guide to related sequences.
EXAMPLE
If r = i, then g(3) = {3,2r,r+1, r^2}, in which the number of real integers is a(3) = 2.
MATHEMATICA
z = 18; t = Join[{{0}}, Expand[NestList[DeleteDuplicates[Flatten[Map[{# + 1, x*#} &, #], 1]] &, {1}, z]]];
u = Table[t[[k]] /. x -> I, {k, 1, z}]; Table[Count[Map[IntegerQ, u[[k]]], True], {k, 1, z}]
CROSSREFS
Cf. A274142.
Sequence in context: A003237 A191519 A165920 * A190501 A026021 A374690
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 12 2016
EXTENSIONS
More terms from Kenny Lau, Jul 05 2016
STATUS
approved