[go: up one dir, main page]

login
A272285
Primes of the form 43*n^2 - 537*n + 2971 in order of increasing nonnegative values of n.
12
2971, 2477, 2069, 1747, 1511, 1361, 1297, 1319, 1427, 1621, 1901, 2267, 2719, 3257, 3881, 4591, 5387, 6269, 7237, 8291, 9431, 10657, 11969, 13367, 14851, 16421, 18077, 19819, 21647, 23561, 25561, 27647, 29819, 32077, 34421, 39367, 41969, 44657, 47431, 50291
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Prime-Generating Polynomials
EXAMPLE
1511 is in this sequence since 43*4^2 - 537*4 + 2971 = 688-2148+2971 = 1511 is prime.
MATHEMATICA
n = Range[0, 100]; Select[43n^2 - 537n + 2971, PrimeQ[#] &]
PROG
(PARI) lista(nn) = for(n=0, nn, if(ispseudoprime(p=43*n^2 - 537*n + 2971), print1(p, ", "))); \\ Altug Alkan, Apr 24 2016
KEYWORD
nonn,less
AUTHOR
Robert Price, Apr 24 2016
STATUS
approved