[go: up one dir, main page]

login
A272101
Square root of largest square dividing A069482(n).
0
1, 4, 2, 6, 4, 2, 6, 2, 2, 2, 2, 2, 2, 6, 10, 4, 4, 16, 2, 12, 4, 18, 2, 4, 6, 2, 2, 12, 2, 4, 2, 2, 2, 24, 10, 2, 8, 2, 2, 8, 12, 2, 16, 2, 6, 2, 2, 30, 4, 2, 4, 8, 2, 2, 4, 2, 6, 2, 6, 2, 24, 20, 2, 4, 6, 36, 2, 6, 4, 6
OFFSET
1,2
COMMENTS
Analogous to A001223 with 2-norm.
a(n) is the square root of the square part of A069482(n).
FORMULA
Conjectures: (Start)
a(A068361(n)) = A001223(A068361(n)).
a(A068361(n)) = 2 for n>1.
These are the only a(n)=A001223(n).
(End)
a(n) = A000188(A069482(n)). - Michel Marcus, Apr 27 2016
EXAMPLE
sqrt(5)=1*sqrt(5), a(n)=1.
sqrt(16)=4*sqrt(1), a(n)=4.
sqrt(24)=2*sqrt(6), a(n)=2.
MATHEMATICA
Table[Sqrt[Prime[n+1]^2-Prime[n]^2], {n, 1, 100}]/.Sqrt[_]->1
PROG
(PARI) a(n) = my(d=prime(n+1)^2 - prime(n)^2); sqrtint(d/core(d)); \\ Michel Marcus, Apr 27 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved