[go: up one dir, main page]

login
A271562
a(n) = G_n(17), where G is the Goodstein function defined in A266201.
4
17, 7625597484987, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084095
OFFSET
0,1
LINKS
EXAMPLE
G_1(17) = B_2(17)-1 = B_2(2^2^2+1)-1 = 3^3^3+1-1 = 7625597484987;
G_2(17) = B_3(3^3^3)-1 = 4^4^4-1 has 155 digits;
G_3(17) has 328 digits.
CROSSREFS
Cf. A056193: G_n(4), A059933: G_n(16), A211378: G_n(19), A215409: G_n(3), A222117: G_n(15), A266204: G_n(5), A266205: G_n(6), A271554: G_n(7), A271555: G_n(8), A271556: G_n(9), A271557: G_n(10), A271558: G_n(11), A271559: G_n(12), A271560: G_n(13), A271561: G_n(14), A266201: G_n(n).
Sequence in context: A013882 A346997 A343778 * A157255 A114432 A134686
KEYWORD
nonn,fini
AUTHOR
Natan Arie Consigli, Apr 13 2016
STATUS
approved