Polynomials C_n(x)

Definition and properties

$$C_{n}(x) = \sum_{k=0}^{n} \frac{(2k)!(x-1)^{n-k}}{(k+1)!k!}$$

$$(x \text{ from } -1.3 \text{ to } 1.6)$$

$$-1$$

$$-x$$

$$-(x-1)x+2$$

$$-(x-1)((x-1)x+2)+5$$

$$-(x-1)((x-1)x+2)+5+14$$

$$-(x-1)((x-1)((x-1)x+2)+5)+14$$

$$-(x-1)((x-1)((x-1)x+2)+5)+14+42$$

$$(x-1)((x-1)((x-1)x+2)+5)+14+42$$

$$(x-1)((x-1)((x-1)x+2)+5)+14+42$$

$$G(x,t) = \frac{1 - \sqrt{1 - 4t}}{2t(1 + t - xt)} = 1 + xt + (x^2 - x + 2)t^2 + (x^3 - 2x^2 + 3x + 3)t^3 + \dots$$

$$C_n(x) = (x - 1)C_{n-1}(x) + C_n(1), C_0(x) = 1$$

$$C_n(1) = \frac{(2n)!}{(n+1)!n!} \text{ (A000108)}$$

$$C_n(2) = \sum_{m=0}^n C_m(1) \text{ (A014137)}$$

Example

The first few polynomials are:

$$C_{0}(x) = 1$$

$$C_{1}(x) = x$$

$$C_{2}(x) = x^{2} - x + 2$$

$$C_{3}(x) = x^{3} - 2x^{2} + 3x + 3$$

$$C_{4}(x) = x^{4} - 3x^{3} + 5x^{2} + 11$$

$$C_{5}(x) = x^{5} - 4x^{4} + 8x^{3} - 5x^{2} + 11x + 31$$

$$C_{6}(x) = x^{6} - 5x^{5} + 12x^{4} - 13x^{3} + 16x^{2} + 20x + 101$$

$$C_{7}(x) = x^{7} - 6x^{6} + 17x^{5} - 25x^{4} + 29x^{3} + 4x^{2} + 81x + 328$$

$$C_{8}(x) = x^{8} - 7x^{7} + 23x^{6} - 42x^{5} + 54x^{4} - 25x^{3} + 77x^{2} + 247x + 1102$$

$$C_{9}(x) = x^{9} - 8x^{8} + 30x^{7} - 65x^{6} + 96x^{5} - 79x^{4} + 102x^{3} + 170x^{2} + 855x + 3760$$

Triangle of coefficients:

1								
0	1							
2	-1	1						
3	3	-2	1					
11	0	5	-3	1				
31	11	-5	8	-4	1			
101	20	16	-13	12	-5	1		
328	81	4	29	-25	17	-6	1	
1102	247	77	-25	54	-42	23	-7	1