%I #8 Feb 24 2018 14:01:39
%S 4,21,348,160397,27477992122,8361728546142791039570,
%T 65449866064796651219032701504776304475204846,
%U 4242994078960802485293647297249599708082797742348261121304757890775884278785179376866443
%N Denominators of r-Egyptian fraction expansion for Pi - 3, where r(k) = 1/(k+1).
%C Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
%C See A269993 for a guide to related sequences.
%H Clark Kimberling, <a href="/A270586/b270586.txt">Table of n, a(n) for n = 1..11</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>
%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>
%e Pi - 3 = 1/(2*4) + 1/(3*21) + 1/(4*348) + 1/(5*160397) + ...
%t r[k_] := 1/(k+1); f[x_, 0] = x; z = 10;
%t n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
%t f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
%t x = Pi - 3; Table[n[x, k], {k, 1, z}]
%Y Cf. A269993.
%K nonn,frac,easy
%O 1,1
%A _Clark Kimberling_, Apr 03 2016