[go: up one dir, main page]

login
A270527
Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r(k) = 1/k!.
2
2, 2, 4, 21, 168, 10754, 25461498, 105205312405537, 2273436544813042470905435068, 580632014636885174037652548241171956049642213022500047, 105076738483143967759563061000636154401568577693011463452250666394865203888381724797435152416096091560375615
OFFSET
1,1
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1)) + r(2)/(n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
EXAMPLE
(1/2)^(1/3) = 1/(1*2) + 1/(2*2) + 1/(6*4) + 1/(24*21) + ...
MATHEMATICA
r[k_] := 1/k!; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = (1/2)^(1/3); Table[n[x, k], {k, 1, z}]
CROSSREFS
Sequence in context: A287745 A287909 A263439 * A232275 A257612 A009541
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Apr 02 2016
STATUS
approved