[go: up one dir, main page]

login
A270137
Decimal expansion of the constant 6/A270121(1) + Sum_{n>=2} 1/A270121(n).
1
0, 8, 6, 6, 0, 7, 3, 9, 0, 8, 7, 3, 0, 1, 5, 9, 2, 9, 9, 7, 1, 2, 6, 4, 1, 4, 0, 6, 8, 5, 8, 4, 8, 0, 6, 4, 2, 8, 6, 6, 3, 1, 1, 5, 2, 3, 8, 6, 2, 7, 3, 2, 1, 1, 6, 0, 0, 9, 7, 3, 3, 8, 6, 5, 9, 3, 2, 8, 1, 9, 3, 5, 3, 8, 1, 8, 9, 1, 4, 0, 6, 7, 4, 4, 5, 4, 6
OFFSET
1,2
COMMENTS
A270121 is defined by the following recurrence: if A270121(n)=x(n) then x(n+1)*x(n-1)=x(n)^2*(1+n*x(n)) for n>=1, with x(1)=7, x(2)=112; and for A270124, if A270124(n)=y(n) then y(0)=2 and y(n)=x(n+1)/x(n) for n>=1. Both of these sequences appear in the continued fraction expansion of this number, which is transcendental.
LINKS
A. N. W. Hone, Curious continued fractions, nonlinear recurrences and transcendental numbers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.8.4.
A. N. W. Hone, Continued fractions for some transcendental numbers, arXiv:1509.05019 [math.NT], 2015-2016, Monatsh. Math. DOI: 10.1007/s00605-015-0844-2.
FORMULA
The continued fraction expansion takes the form
[0; 1, 6, A270124(0), A270121(1), ..., n*A270124(n-1), A270121(n), (n+1)*A270124(n), A270121(n+1), ...].
EXAMPLE
0.86607390873015929971... = 6/A270121(1) + Sum_{n>=2} 1/A270121(n) = 6/7 + 1/112 + 1/403200 + 1/1755760043520000 + ... = [0; 1, 6, 2, 7, 32, 112, 10800, 403200, 17418254400, ...] = [0; 1, 6, A270124(0), A270121(1), 2*A270124(1), A270121(2), 3*A270124(2), A270121(3), 4*A270124(3), ...] (continued fraction).
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Andrew Hone, Mar 11 2016
EXTENSIONS
More terms from Jon E. Schoenfield, Nov 12 2016
STATUS
approved