[go: up one dir, main page]

login
A269750
Triangle read by rows: row n gives coefficients of Schur polynomial Omega(n) in order of decreasing powers of x.
6
1, 1, 0, 1, 1, 1, 1, 2, 4, 1, 1, 3, 8, 9, 2, 1, 4, 13, 23, 25, 3, 1, 5, 19, 44, 72, 69, 5, 1, 6, 26, 73, 152, 222, 203, 8, 1, 7, 34, 111, 275, 511, 703, 623, 13, 1, 8, 43, 159, 452, 997, 1725, 2272, 1990, 21, 1, 9, 53, 218, 695, 1754, 3572, 5854, 7510, 6559, 34, 1, 10, 64, 289, 1017, 2870, 6645, 12717, 20065, 25325, 22161, 55
OFFSET
0,8
COMMENTS
Row n contains n+1 terms.
LINKS
Gheorghe Coserea, Rows n = 0..200, flattened
Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015.
FORMULA
G.f. A(x) = Sum_{n>=0} P_n(t)*x^n = 2*(1-x)/(-2*x^2 + (t-2)*(x-1) + t*(1-x)*sqrt(1-4*x)), where P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k) (see Misseldine link); equivalently, the g.f. can be rewritten as y^2*(y^2 - y + 1)/(y^4 - y^3 + 2*y - 1 - t*y*(y - 1)*(y^2 - y + 1)), where y=A000108(x). - Gheorghe Coserea, Sep 10 2018
EXAMPLE
A(x) = 1 + t*x + (t^2 + t + 1)*x^2 + (t^3 + 2*t^2 + 4*t + 1)*x^3 + ...
Triangle begins:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 1;
[1] 1, 0;
[2] 1, 1, 1;
[3] 1, 2, 4, 1;
[4] 1, 3, 8, 9, 2;
[5] 1, 4, 13, 23, 25, 3;
[6] 1, 5, 19, 44, 72, 69, 5;
[7] 1, 6, 26, 73, 152, 222, 203, 8;
[8] 1, 7, 34, 111, 275, 511, 703, 623, 13;
[9] 1, 8, 43, 159, 452, 997, 1725, 2272, 1990, 21;
[10]...
MATHEMATICA
c[k_] := Binomial[2k, k]/(k+1);
om[0] = 1; om[1] = x; om[n_] := om[n] = x om[n-1] + Sum[(c[k-1] x + 1) om[n - k], {k, 2, n}];
row[n_] := CoefficientList[om[n], x] // Reverse;
Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Sep 06 2018 *)
PROG
(PARI)
seq(N, t='t) = {
my(a=vector(N), c(k)=binomial(2*k, k)/(k+1)); a[1]=1; a[2]=t;
for (n = 2, N-1,
a[n+1] = t*a[n] + sum(k = 2, n, (c(k-1)*t+1)*a[n+1-k]));
return(a);
};
concat(apply(Vec, seq(12)))
(PARI)
N=12; x='x + O('x^N); t='t;
concat(apply(Vec, Vec(2*(1-x)/(-2*x^2 + (t-2)*(x-1) + t*(1-x)*sqrt(1-4*x)))))
\\ Gheorghe Coserea, Sep 10 2018
CROSSREFS
Cf. A000040, A000045(n-1)=P_n(0), A000108, A270789.
For odd prime p, evaluating the polynomial P_n(t) at t=A000005(p-1) gives the number of Schur rings over Z_{p^n}. For p=3,5,7 we have t=2,3,4 and the associated sequences A270785(n) = P_n(2), A270786(n) = P_n(3), A270787(n) = P_n(4).
Sequence in context: A117136 A362142 A139227 * A292495 A065626 A201758
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Mar 22 2016
EXTENSIONS
More terms from Gheorghe Coserea, Mar 24 2016
STATUS
approved