OFFSET
1,1
COMMENTS
Positive integers y in the solutions to 2*x^2-66*y^2-2112*y-22880 = 0.
All sequences of this type (i.e. sequences with fixed offset k, and a discernible pattern: k=0...32 for this sequence, k=0..1 for A001652, k=0...10 for A106521) can be extended using a formula such as x(n) = a*x(n-p) - x(n-2p) + b, where a and b are various constants, and p is the period of the series. Alternatively 'p' can be considered the number of concurrent series. - Daniel Mondot, Aug 08 2016
Numbers x such that 11440+33*x*(32+x)is a square. - Harvey P. Dale, Oct 18 2020
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,46,-46,0,0,0,0,-1,1).
FORMULA
G.f.: x*(7 +20*x +33*x^2 +121*x^3 +46*x^4 +385*x^5 +151*x^6 -20*x^7 -11*x^8 -11*x^9 -2*x^10 -11*x^11 -4*x^12) / ((1 -x)*(1 -46*x^6 +x^12)).
a(1)=7, a(2)=27, a(3)=60, a(4)=181, a(5)=227, a(6)=612, a(7)=1085, a(8)=1985, a(9)=3492, a(10)=9047, a(11)=11161, a(12)=28860, a(n)=46*a(n-6)-a(n-12)+704. - Daniel Mondot, Aug 08 2016
EXAMPLE
7 is in the sequence because sum(k=7, 39, k^2) = 20449 = 143^2.
MATHEMATICA
Rest@ CoefficientList[Series[x (7 + 20 x + 33 x^2 + 121 x^3 + 46 x^4 + 385 x^5 + 151 x^6 - 20 x^7 - 11 x^8 - 11 x^9 - 2 x^10 - 11 x^11 - 4 x^12)/((1 - x) (1 - 46 x^6 + x^12)), {x, 0, 32}], x] (* Michael De Vlieger, Aug 08 2016 *)
LinearRecurrence[{1, 0, 0, 0, 0, 46, -46, 0, 0, 0, 0, -1, 1}, {7, 27, 60, 181, 227, 612, 1085, 1985, 3492, 9047, 11161, 28860, 50607}, 50] (* Harvey P. Dale, Oct 18 2020 *)
PROG
(PARI) Vec(x*(7 +20*x +33*x^2 +121*x^3 +46*x^4 +385*x^5 +151*x^6 -20*x^7 -11*x^8 -11*x^9 -2*x^10 -11*x^11 -4*x^12) / ((1 -x)*(1 -46*x^6 +x^12)) + O(x^40))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Feb 27 2016
STATUS
approved