[go: up one dir, main page]

login
A269298
Central nonzero values of A231599.
2
1, 2, 2, 4, 6, 8, 16, 28, 50, 100, 196, 388, 786, 1600, 3280, 6780, 14060, 29280, 61232, 128414, 270084, 569514, 1203564, 2548770, 5407754, 11493312, 24465960, 52157508, 111342192, 237985596, 509275390, 1091017632, 2339687834, 5022312654, 10790564790
OFFSET
0,2
COMMENTS
Rows of A231599 whose row number is divisible by four have positive central values. a(n) is the central value of row 4n. They are also the maximal value of that row, so a(n) = A086376(4n).
a(1) = a(2) = 2. Apart from that the sequence is strictly increasing.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..250 (first 101 trms from Tilman Piesk)
Dorin Andrica and Ovidiu Bagdasar, On some results concerning the polygonal polynomials, Carpathian Journal of Mathematics (2019) Vol. 35, No. 1, 1-11.
Tilman Piesk, A231599 as a centered table (first 11 values visible)
FORMULA
a(n) = A231599( 4n, A000217(4n)/2 ) = A086376(4n).
EXAMPLE
For n = 5, A231599( 4n, A000217(4n)/2 ) = A231599(20, 105) = 8, so a(5)=8.
For n = 5, A086376(4n) = A086376(20) = 8, so a(5)=8.
CROSSREFS
Sequence in context: A239851 A153958 A216214 * A153964 A001010 A357952
KEYWORD
nonn
AUTHOR
Tilman Piesk, Feb 21 2016
STATUS
approved