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Note on a Recurrence for Approximation Sequences of p-adic Square
Roots
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Abstract

A recurrence for the two standard approximation sequences of the p-adic square root v/ —b is derived

for those integers of b with Legendre symbol (%’) = +1.

In the context of algebraic congruences to prime-power moduli a standard theorem (see e.g., Nagell
[2], Theorem 50, p. 87) states that if a degree m polynomial f(z) over the integers which is primitive
(has ged of the coefficients equal to 1) and has a simple root x; modulo a prime p, f(z1) = 0(modp),
then the congruence f(x) = 0(modp™) has exactly one solution modulo p", x, say, which is congruent
to 21 modulo p for every n € N. The recursive proof adapts Newton’s [5] method to modular analysis.
In the p—adic setting it is also known as Hensel-lifting, an application of Hensel’s lemma [1, 3]. Here we
consider f(x) = x? + b with non-vanishing integer b. This note originated in a solution of the special
exercise 1.8, on p. 33, of [6] (or exercise 5 ii), p. 54, of [1]). The general case will be treated by the
following proposition.
Proposition: Recurrence for p-adic +v/—b approximation sequences

(4) (4)

For x,” = x3,”(p,b), the solution of the congruence
2 + b = 0 (mod p™), for n = {2, 3,..}, (1)

with an odd prime p and b € Z\ {0}, the following recurrence holds. The notation modp(k,p) (like
in MAPLE []]) is used to pick the representative of the residue class of k modulo p from the complete
residue system C'RSy(p) = {0, 1, ..., p—1}.

2\ = modp <$T(L)1 + zl((xflzzl)g + b), p”) for i = 1, 2 and n > 2, with input acl(i) =1z, (2

and the two simple roots z; of f(x) = 2% + b(modp), for b with Legendre symbol <’7b> = +1, and

% = z(p,z;) = modp (—(2z:)"" %, p) . (3)
Proof: The following three sequences Py(f), KT(LZ') and Lﬁf ) will be needed (they always depend on p and
b):
o) = + P p, (4)
with an odd prime p. ‘ ‘
202 4 p = KW pn (5)
Like in the proof of Nagell's Theorem 50 [2] (or in Hensel-lifting) one uses also
al) = x,(ﬁl + Lgllp”, form = 2,3, ... (6)
The aim is to find LS)_l , i.e., a recurrence formula which produces the numbers x,(f) = xﬁf ) (p,b) lying

in CRSy(p™) = {0, 1...p" — 1}. This sequence {ﬂ:Sf) oy with CC((]i) = 0 and ﬂ:gl) := x; (one of the two
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simple zeros modulo p) is known as standard sequence representing a p-adic integer from Z, (the set of
the p-adic integers).

See e.g., Frey [1] I11, §4, for the definition of Z, as an equivalence class of sequences {s,, }§° with s, € Z),
the set of rational numbers (in lowest terms) which have no factor p at all (e.g.,0), or p does not
divide the denominator which is taken as a positive integer. Furthermore, s,41 — s, = L, with

Ly, € {L €Q] Ll < #}, with the p-adic valuation |L|, : where w,(L) is for non-

= TOK
vanishing rational L the integer exponent a, of p in the factorization L = ¢ [] pi* (¢ = +1 or —1). If
there is no factor p in the numerator or denominator of L then w,(L) = 0, and one puts w,(0) = oo.
An equivalence relation between such sequences is defined by {s,} ~ {s},} iff s, = s}, mod (Z,)p") .
This notation stands for s, — s, = 1, withrp,, € {y-p" [y € Zpy} = {r € Q | [r], < #} (In
[1] |s|p is called ¢p(s), and our powers of p are n, not n + 1.)
From eq. (4) with Pl(i) = 0 and eq. (5) we have, for n > 2,
(i) 2 (i) pD) ()2

pn pnfl

@ _ xl+b

)~ 0. A special role plays K;’ =

For n = 1 this is trivial because Pl(i , with the zeros z;. Eq.

(7) determines Ky(f), for n > 2, in terms of x; and pY (and b, p).
The digits of the p-adic integer are related to
(4) (4)
; Ty — T
LnZZI = TLPTI"_l, for integer n > 2. (8)
Namely, the coefficient of p™ in the p-adic expansion is Lg), n > 1, starting with L((]i) = x;. Now eq.

(6) is used in Computil?§ K,(f) pt = xS)Q + b. This yields K,(ﬁl P+ 23:,(21 Lszlp"*1 + Ls)}l p"pt 2,
7

After elimination of z,’; with eq. (4) one has

n n—1

Because an overall factor p™ has to appear also on the r.h.s. one chooses

L)y =z (10)
where the n independent number z;, for ¢ = 1, 2 is determined by
22,z + 1 = 0(modp) . (11)
This is a linear congruence, and because ged(2x;,p) = ged(z;,p) = 1, the solution is unique, and by
Fermat’s little theorem given by (see e.g., Nagell, Theorem 38, pp. 76-77)
zi = —(22;)P"% (modp) . (12)
(One might bother about this special choice of LSL, but the general requirement would be 2 x; L,(QI +
Ky(ﬁl = 0 (mod p) with the unique solution LS)_l = —(2x;)P2 Kflzl (mod p) which has just been found.)
This now becomes a recurrence for K" (after dividing by p™) for n > 2 with input K p:
) . 1 21 2 ) . . )
Kr(f) = Kr(:ll % + 212 <K§Z> + 2x; Pr(lz_)l + pPr(LZ_)f) + 2z P}ll_) ] . (13)



Due to eq. (7) this could be converted to an equation involving only the P,gi) and P,Eizl (and p, z;, 2, Kfz))
But this is not of interest here.

The proposition follows now from eq. (6) after the choice of LS)_l from eqgs. (10) and (11) which was
valid modulo p:

x,(f) = xﬁf)_l + z Ky(jzlpnfl (modp™) . (14)
Inserting KU )1 p"~! from eq. (7) (with n — n — 1) and replacing KY') leads to
2 b ( ) A(Z) 2
2P =29 4z <~”ﬂz REL Y P =S R S (modp") , (15)
p p p
where we have used pP,Eizl = is)q = xﬁil — x;. The second term on the r.h.s. simplifies after

cancellation of the x; and xs)_l x; terms to z; (xs)_Ql + b).

Because we look for 2 € CRSy(p") = {0, 1,...p" — 1} we use the modp(a,p™) notation explained
in the proposition (replacing (modp™)). This then produces the asserted equation of the proposition.
O

From Nagel’s [2] proof of his Theorem 50, pp. 86 - 87, one would obtain the recurrence

o) = modp (a1 + (=2 (2 )P~ (e )% + b), p"). (16)
fori = 1, 2 and n > 2, with input xj(i) = ;.
The difference to the recurrence derived here is that the z; of eq. (3) which needs besides p only the
(l)

input x; is in this case replaced by a similar quantity which used z,,

The data p, b, x1, T2, 21, 22 given in the Table, for p = 3, 5, ..., 31 refers to f(z) = 22 + b = 0 (modp)
—b b

with b > 0 and Legendre symbol —) = +1, and with b < 0 and Legendre symbol <—) = +1.
p p

Because of (modp) the inputs x; and x2, and thus also z; and z9, are the same for corresponding positive
or negative b. The different sequences for n > 2 arise from the b appearance in the recurrence under
(mod p™).

Some examples: p = 5: b = 1,21 = 2,21 = 1 produce the standard sequence {x%l)}go (where a leading
0 for n = 0 has been added) [0,2,7,57,182,2057,14557,45807, 280182, 280182, ...] which is A048898.
b= 1,25 = 2,2 = 2 yields [0,3,18, 68,443, 1068, 1068, 32318, 110443, 1672943, ...] which is A048899.
b=4d,2, =22 = 2yields [0, 1,11, 11,261, 2136, 2136, 64636, 220886, 1392761, ...] which is A268922 and
b = 4,29 = 4,29 = 3 yields [0,4,14, 114, 364,989, 13489, 13489, 169739, 560364, ...] which is A269590.
The corresponding digit sequences {L )}80 from eq. (8) and L(()Z) = x; are given in A210850, A210851,

A269591, A269592, respectively. The {K }0 of eq. (5) sequences are found under A210848, A210849,
A268922, A269093 ,A269594, respectively.

Of course, one may also use the recurrence for other members of the residue classes of the con-
sidered b. For example, for p = 5, b = 6 also with z1 = 2 and 2y = 1 one finds
[2,12,37,162,1412,10787,42037, 354537, 1526412, 3479537, ...], the standard sequence for the 5-adic in-
teger v/—6 (call it +1/—6) . The other approximation sequence for zo = 3 and 2o = 4, —/—6, is
[3,13,88,463, 1713, 4838, 36088, 36088, 426713, 6286088, ...].

In Maple [4] one can use the package with(padic) and then the two expansion for the p-adic integers
++/—b are given, with [evalp(RootO f(x? + b),p, N)], up to Order p™¥ 1.
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Table: Odd primes, radicands —b , zeros x;, x; and numbers z;, 7,
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