Note on a Recurrence for Approximation Sequences of p-adic Square Roots

Wolfdieter L a n g ¹

Abstract

A recurrence for the two standard approximation sequences of the p-adic square root $\sqrt{-b}$ is derived for those integers of b with Legendre symbol $\left(\frac{-b}{p}\right) = +1$.

In the context of algebraic congruences to prime-power moduli a standard theorem (see e.g., Nagell [2], Theorem 50, p. 87) states that if a degree m polynomial f(x) over the integers which is primitive (has gcd of the coefficients equal to 1) and has a simple root x_1 modulo a prime p, $f(x_1) \equiv 0 \pmod{p}$, then the congruence $f(x) = 0 \pmod{p^n}$ has exactly one solution modulo p^n , x_n say, which is congruent to x_1 modulo p for every p0. The recursive proof adapts p1 method to modular analysis. In the p1-adic setting it is also known as p2 Hensel-lifting, an application of p3 Hensel's lemma [1, 3]. Here we consider p3 with non-vanishing integer p4. This note originated in a solution of the special exercise 1.8, on p5. 33, of [6] (or exercise 5 ii), p6. 54, of [1]). The general case will be treated by the following proposition.

Proposition: Recurrence for p-adic $\pm\sqrt{-b}$ approximation sequences

For $x_n^{(i)} = x_n^{(i)}(p,b)$, the solution of the congruence

$$x_n^{(i)} + b \equiv 0 \pmod{p^n}, \text{ for } n = \{2, 3, ...\},$$
 (1)

with an odd prime p and $b \in \mathbb{Z} \setminus \{0\}$, the following recurrence holds. The notation modp(k, p) (like in MAPLE [4]) is used to pick the representative of the residue class of k modulo p from the complete residue system $CRS_0(p) = \{0, 1, ..., p-1\}$.

$$x_n^{(i)} = modp\left(x_{n-1}^{(i)} + z_i\left((x_{n-1}^{(i)})^2 + b\right), p^n\right)$$
 for $i = 1, 2$ and $n \geq 2$, with input $x_1^{(i)} = x_i$, (2)

and the two simple roots x_i of $f(x) \equiv x^2 + b \pmod{p}$, for b with Legendre symbol $\left(\frac{-b}{p}\right) = +1$, and

$$z_i = z_i(p, x_i) = modp(-(2x_i)^{p-2}, p).$$
 (3)

Proof: The following three sequences $P_n^{(i)}$, $K_n^{(i)}$ and $L_n^{(i)}$ will be needed (they always depend on p and b):

$$x_n^{(i)} = x_i + P_n^{(i)} p, (4)$$

with an odd prime p.

$$x_n^{(i)\,2} + b = K_n^{(i)} p^n \,. ag{5}$$

Like in the proof of Nagell's Theorem 50 [2] (or in Hensel-lifting) one uses also

$$x_n^{(i)} = x_{n-1}^{(i)} + L_{n-1}^{(i)} p^n$$
, for $n = 2, 3, ...$ (6)

The aim is to find $L_{n-1}^{(i)}$, *i.e.*, a recurrence formula which produces the numbers $x_n^{(i)} = x_n^{(i)}(p,b)$ lying in $CRS_0(p^n) = \{0, 1 \dots p^n - 1\}$. This sequence $\{x_n^{(i)}\}_{n=0}^{\infty}$ with $x_0^{(i)} := 0$ and $x_1^{(i)} := x_i$ (one of the two

¹ wolfdieter.lang@partner.kit.edu, http://www.itp.kit.edu/~wl

simple zeros modulo p) is known as standard sequence representing a p-adic integer from \mathbb{Z}_p (the set of the p-adic integers).

See e.g., Frey [1] III, §4, for the definition of \mathbb{Z}_p as an equivalence class of sequences $\{s_n\}_0^\infty$ with $s_n \in \mathbb{Z}_{(p)}$, the set of rational numbers (in lowest terms) which have no factor p at all (e.g.,0), or p does not divide the denominator which is taken as a positive integer. Furthermore, $s_{n+1} - s_n = L_{p,n}$ with $L_{p,n} \in \{L \in \mathbb{Q} \mid |L|_p \leq \frac{1}{p^n}\}$, with the p-adic valuation $|L|_p := \frac{1}{p^{w_p(L)}}$, where $w_p(L)$ is for non-vanishing rational L the integer exponent a_p of p in the factorization $L = \varepsilon \prod p_i^{a_i}$ ($\varepsilon = +1$ or -1). If there is no factor p in the numerator or denominator of L then $w_p(L) = 0$, and one puts $w_p(0) = \infty$. An equivalence relation between such sequences is defined by $\{s_n\} \sim \{s'_n\}$ iff $s_n \equiv s'_n \mod (\mathbb{Z}_{(p)} p^n)$. This notation stands for $s_n - s'_n = r_{p,n}$ with $r_{p,n} \in \{y \cdot p^n \mid y \in \mathbb{Z}_{(p)}\} = \{r \in \mathbb{Q} \mid |r|_p \leq \frac{1}{p^n}\}$. (In $[1] \mid s|_p$ is called $\varphi_p(s)$, and our powers of p are n, not n+1.)

From eq. (4) with $P_1^{(i)} = 0$ and eq. (5) we have, for $n \geq 2$,

$$K_n^{(i)} = \frac{x_n^{(i)\,2} + b}{p^n} = \frac{K_1^{(i)} + 2x_i P_n^{(i)} + p P_n^{(i)\,2}}{p^{n-1}} \in \mathbb{N}_0.$$
 (7)

For n = 1 this is trivial because $P_1^{(i)} = 0$. A special rôle plays $K_1^{(i)} = \frac{x_i^2 + b}{p}$, with the zeros x_i . Eq. (7) determines $K_n^{(i)}$, for $n \geq 2$, in terms of x_i and $P_n^{(i)}$ (and b, p). The digits of the p-adic integer are related to

$$L_{n-1}^{(i)} = \frac{x_n^{(i)} - x_{n-1}^{(i)}}{p^{n-1}}, \text{ for integer } n \ge 2.$$
 (8)

Namely, the coefficient of p^n in the p-adic expansion is $L_n^{(i)}$, $n \ge 1$, starting with $L_0^{(i)} := x_i$. Now eq. (6) is used in computing $K_n^{(i)} p^n = x_n^{(i)\,2} + b$. This yields $K_{n-1}^{(i)} p^{n-1} + 2 x_{n-1}^{(i)} L_{n-1}^{(i)} p^{n-1} + L_{n-1}^{(i)\,2} p^n p^{n-2}$. After elimination of $x_{n-1}^{(i)}$ with eq. (4) one has

$$K_n^{(i)} p^n = p^{n-1} \left(2 x_i L_{n-1}^{(i)} + K_{n-1}^{(i)} \right) + p^n \left(p^{n-2} L_{n-1}^{(i)2} + 2 P_{n-1}^{(i)} L_{n-1}^{(i)} \right) . \tag{9}$$

Because an overall factor p^n has to appear also on the r.h.s. one chooses

$$L_{n-1}^{(i)} = z_i K_{n-1}^{(i)}, (10)$$

where the *n* independent number z_i , for i = 1, 2 is determined by

$$2x_i z_i + 1 \equiv 0 \pmod{p} . \tag{11}$$

This is a linear congruence, and because $gcd(2x_i, p) = gcd(x_i, p) = 1$, the solution is unique, and by Fermat's little theorem given by (see e.g., Nagell, Theorem 38, pp. 76-77)

$$z_i \equiv -(2x_i)^{p-2} \pmod{p}$$
 (12)

(One might bother about this special choice of $L_{n-1}^{(i)}$, but the general requirement would be $2x_i L_{n-1}^{(i)} + K_{n-1}^{(i)} = 0 \pmod{p}$ with the unique solution $L_{n-1}^{(i)} \equiv -(2x_i)^{p-2} K_{n-1}^{(i)} \pmod{p}$ which has just been found.) This now becomes a recurrence for $K_n^{(i)}$ (after dividing by p^n) for $n \geq 2$ with input $K_1^{(i)}$:

$$K_n^{(i)} = K_{n-1}^{(i)} \left[\frac{1 + 2x_i z_i}{p} + z_i^2 \left(K_1^{(i)} + 2x_i P_{n-1}^{(i)} + p P_{n-1}^{(i)} \right) + 2z_i P_{n-1}^{(i)} \right] . \tag{13}$$

Due to eq. (7) this could be converted to an equation involving only the $P_n^{(i)}$ and $P_{n-1}^{(i)}$ (and $p, x_i, z_i, K_1^{(i)}$). But this is not of interest here.

The proposition follows now from eq. (6) after the choice of $L_{n-1}^{(i)}$ from eqs. (10) and (11) which was valid modulo p:

$$x_n^{(i)} = x_{n-1}^{(i)} + z_i K_{n-1}^{(i)} p^{n-1} \pmod{p^n} . (14)$$

Inserting $K_{n-1}^{(i)} p^{n-1}$ from eq. (7) (with $n \to n-1$) and replacing $K_1^{(i)}$ leads to

$$x_n^{(i)} = x_{n-1}^{(i)} + p z_i \left(\frac{x_i^2 + b}{p} + 2 x_i \frac{\hat{x}_{n-1}^{(i)}}{p} + \frac{\hat{x}_{n-1}^{(i)}}{p} \right) (mod \, p^n) , \qquad (15)$$

where we have used $pP_{n-1}^{(i)} = \hat{x}_{n-1}^{(i)} = x_{n-1}^{(i)} - x_i$. The second term on the *r.h.s.* simplifies after cancellation of the x_i and $x_{n-1}^{(i)} x_i$ terms to $z_i (x_{n-1}^{(i)2} + b)$.

Because we look for $x_n^{(i)} \in CRS_0(p^n) = \{0, 1, \dots p^n - 1\}$ we use the $modp(a, p^n)$ notation explained in the proposition (replacing $(mod \, p^n)$). This then produces the asserted equation of the proposition.

From Nagel's [2] proof of his Theorem 50, pp. 86 - 87, one would obtain the recurrence

$$x_n^{(i)} = modp\left(x_{n-1}^{(i)} + \left(-2\left(x_{n-1}^{(i)}\right)^{p-2}\right)\left(\left(x_{n-1}^{(i)}\right)^2 + b\right), p^n\right). \tag{16}$$

for i = 1, 2 and $n \ge 2$, with input $x_I^{(i)} = x_i$.

The difference to the recurrence derived here is that the z_i of eq. (3) which needs besides p only the input x_i is in this case replaced by a similar quantity which used $x_{n-1}^{(i)}$.

The data p, b, x_1 , x_2 , z_1 , z_2 given in the *Table*, for p=3, 5, ..., 31 refers to $f(x)=x^2+b\equiv 0 \pmod p$ with b>0 and Legendre symbol $\left(\frac{-b}{p}\right)=+1$, and with b<0 and Legendre symbol $\left(\frac{b}{p}\right)=+1$. Because of $(mod\,p)$ the inputs x_1 and x_2 , and thus also z_1 and z_2 , are the same for corresponding positive or negative b. The different sequences for $n\geq 2$ arise from the b appearance in the recurrence under $(mod\,p^n)$.

Some examples: $\mathbf{p}=\mathbf{5}$: $b=1, x_1=2, z_1=1$ produce the standard sequence $\{x_n^{(1)}\}_0^\infty$ (where a leading 0 for n=0 has been added) [0,2,7,57,182,2057,14557,45807,280182,280182,...] which is $\underbrace{A048898}_{b=1,x_3=2,z_1=2}$ yields [0,3,18,68,443,1068,1068,32318,110443,1672943,...] which is $\underbrace{A048899}_{b=4,x_1=2,z_1=2}$ yields [0,1,11,11,261,2136,2136,64636,220886,1392761,...] which is $\underbrace{A268922}_{b=4,x_2=4,z_2=3}$ yields [0,4,14,114,364,989,13489,13489,169739,560364,...] which is $\underbrace{A269590}_{b=4,x_2=4,z_2=3}$ yields [0,4,14,114,364,989,13489,13489,13489,169739,560364,...] which is $\underbrace{A269590}_{b=4,x_2=4,z_2=3}$ yields [0,4,14,114,364,989,13489,13489,13489,169739,560364,...] which is $\underbrace{A210849}_{b=4,x_2=4,z_2=3}$ yields [0,4,14,114,364,989,13489,

Of course, one may also use the recurrence for other members of the residue classes of the considered b. For example, for $p=5,\ b=6$ also with $x_1=2$ and $z_1=1$ one finds [2,12,37,162,1412,10787,42037,354537,1526412,3479537,...], the standard sequence for the 5-adic integer $\sqrt{-6}$ (call it $+\sqrt{-6}$). The other approximation sequence for $x_2=3$ and $z_2=4,-\sqrt{-6}$, is [3,13,88,463,1713,4838,36088,36088,426713,6286088,...].

In Maple [4] one can use the package with (padic) and then the two expansion for the p-adic integers $\pm \sqrt{-b}$ are given, with $[evalp(RootOf(x^2+b), p, N)]$, up to Order p^{N-1} .

References

- [1] Gerhard Frey, Elementare Zahlentheorie, Vieweg & Sohn, Braunschweig, 1984
- [2] Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
- [3] Hensel's lemma, https://en.wikipedia.org/wiki/Hensel%27s_lemma
- [4] Maple http://www.maplesoft.com/
- [5] Newton's method, https://en.wikipedia.org/wiki/Newton%27s_method
- [6] Joseph H. Silverman and John Tate, Rational Points on Elliptic Curves, Springer, 1992

Keywords: p-adic square roots, Hensel lifting

AMS MSC number: 11D09, 11S05

OEIS A-numbers: <u>A048898</u>, <u>A048899</u>, <u>A210848</u>, <u>A210849</u>, <u>A210850</u>, <u>A210851</u>, <u>A268922</u>, <u>A269590</u>,

A269591, A269592, A269593, A269594.

Table: Odd primes, radicands -b , zeros $\mathbf{x}_1,\,\mathbf{x}_2$ and numbers $\mathbf{z}_1,\,\mathbf{z}_2$

Prime p	b	b	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{z_1}$	${f z_2}$	Prime p	b	b	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{z_1}$	$\mathbf{z_2}$
3	2	-1	1	2	1	2	23	5	-18	8	15	10	13
5	1	-4	2	3	1	4		7	-16	4	19	20	3
	4	-1	1	4	2	3		10	-13	6	17	21	2
7	3	- 4	2	5	5	2		11	-12	9	14	14	9
	5	- 2	3	4	1	6		14	-9	3	20	19	4
	6	-1	1	6	3	4]	15	-8	10	13	8	15
11	2	-9	3	8	9	2		17	-6	11	12	1	22
	6	- 5	4	7	4	7		19	-4	2	21	17	6
	7	-4	2	9	8	3		20	-3	7	16	18	5
	8	-3	5	6	1	10		21	-2	5	18	16	7
	10	-1	1	10	5	6		22	-1	1	22	11	12
13	1	-12	5	8	9	4	29	1	-28	12	17	6	23
	3	-10	6	7	1	12		4	-25	5	24	26	3
	4	-9	3	10	2	11		5	-24	13	16	10	19
	9	-4	2	11	3	10		6	-23	9	20	8	21
	10	-3	4	9	8	5		7	-22	14	15	1	28
	12	-1	1	12	6	7		9	-20	7	22	2	27
17	1	-16	4	13	2	15		13	-16	4	25	18	11
	2	-15	7	10	6	11		16	-13	10	19	13	16
	4	-13	8 3	9	1	16		20	-9	3	26	24	5
	8 9	-9 -8	5	$\begin{array}{ c c }\hline 14\\12\\ \end{array}$	14 5	$egin{array}{c} 3 \\ 12 \end{array}$		22 23	$egin{array}{c} -7 \ -6 \end{array}$	6 8	23 21	$\begin{array}{ c c } 12 \\ 9 \end{array}$	17
	13	-8 -4	2	15	4	13		23 24	- 6 -5	11	18	25	$egin{array}{c} 20 \ 4 \end{array}$
	15 15	$egin{array}{c} -4 \\ -2 \end{array}$	6	11	7	10		24 25	-3 -4	$\frac{11}{2}$	$\frac{16}{27}$	7	22
	16	-2 -1	1	16	8	9		28	-4 -1	1	28	14	15
19	2	-17	6	13	11	8	31	3	-28	11	20	7	24
	3	-16	$\frac{3}{4}$	15	7	12		6	-25	5	26	3	28
	8	-11	87	12	4	15		11	-20	12	19	9	22
	10	-9	3	16	3	16		12	-19	9	22	12	19
	12	-7	8	11	13	6		13	-18	7	24	11	20
	13	-6	5	14	17	2		15	-16	4	27	27	4
	14	-5	9	10	1	18		17	-14	13	18	25	6
	15	-4	2	7	14	5		21	-10	14	17	21	10
	18	-1	1	18	9	10		22	- 9	3	28	5	26
							1	23	-8	15	16	1	30
								24	-7	10	21	17	14
								26	- 5	6	25	18	13
								27	- 4	2	29	23	8
								29	- 2	8	23	29	2
								30	-1	1	30	15	16