[go: up one dir, main page]

login
A268761
Number of n X 3 binary arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
1
2, 15, 56, 223, 762, 2607, 8500, 27411, 86622, 270955, 838224, 2573015, 7841538, 23759463, 71619436, 214933915, 642504870, 1914023267, 5684288136, 16834582623, 49732758858, 146587890015, 431177727396, 1265883329827, 3710027613934
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 16*a(n-3) - a(n-4) + 12*a(n-5) - 4*a(n-6).
Empirical g.f.: x*(2 + 7*x - 8*x^2 + x^3) / (1 - 2*x - 3*x^2 + 2*x^3)^2. - Colin Barker, Jan 14 2019
EXAMPLE
Some solutions for n=4:
..1..0..1. .0..1..1. .1..0..0. .1..0..1. .0..1..0. .1..1..0. .0..0..0
..0..0..1. .0..0..0. .0..0..0. .0..0..0. .0..0..1. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .1..0..1. .0..1..0. .0..0..0. .0..0..0. .1..0..1
..0..0..0. .0..0..0. .0..0..1. .0..0..1. .0..0..1. .0..1..0. .1..0..0
CROSSREFS
Column 3 of A268766.
Sequence in context: A056078 A142861 A305673 * A088979 A265909 A034571
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 13 2016
STATUS
approved