[go: up one dir, main page]

login
A268665
Number of primes p==1 (mod 3) for which A261029(2*prime(n)*p) is 4-i if prime(n)==i (mod 3), where i=1 or 2.
1
6, 9, 22, 26, 44, 52, 73, 111, 122, 164, 201, 214, 254, 311, 374, 398, 465, 521, 542, 617, 684, 774, 899, 969, 1005, 1064, 1100, 1181, 1441, 1548, 1658, 1694, 1918, 1977, 2114, 2255, 2376, 2537, 2684, 2727, 3019, 3068, 3181, 3238, 3611, 3985, 4114, 4182, 4313
OFFSET
3,1
EXAMPLE
Let n=3, then prime(n)=5. Since 5==2(mod 3), then i=2. So a(3) is the number of primes p==1(mod 3) for which A261029(10*p)=4-2=2. So it is number of terms in A272381, i.e., a(3)=6.
Let n=4, then prime(n)=7. Since 7==1(mod 3), then i=1. So a(4) is the number of primes p==1(mod 3) for which A261029(14*p)=4-1=3. So it is number of terms in A272382, i.e., a(4)=9.
KEYWORD
nonn
AUTHOR
STATUS
approved