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Theorem 1 Let ¢, forn > 0 be the nonnegative integers m, in increasing order, such that
|m/2||m/3]| is a square. Then the generating function for this sequence is
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and the exponential generating function is
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Proof Let S be the set of nonnegative integers m such that |m/2]|m/3| is a square.
Write m =55 4+1¢ with 0 <+ <5, 5 > 0.

If i =0or 1, [m/2]|m/3] = 652 is a square if and only if j = 0. This gives the terms
co=0and ¢; = 1.

Ifi =2, [m/2]|m/3] = (3j+1)(2j) = 652 +2j = y? is equivalent to (65 +1)% = 6y>+1.
Thus m = 6j+2 is included in S if and only if (X = m—1,Y = y) is a nonnegative solution
of the Pell equation

X2 -6Y?=1 (1)
such that X =1 mod 6.

Ifi =3, [m/2]|m/3] = (3j+1)(2j+1) = 652 +55+1 = y? is equivalent to (12j+5)% =
24y? + 1. Thus m = 65 + 3 is included in S if and only if (X = 12j +5=2m — 1,Y = 2y)
is a nonnegative solution of (1) with Y even and X = 5 mod 12.

Ifi=4orb5, [m/2]|m/3] = (35+2)(2j +1) = 652 +75+2 is equivalent to (12j +7)? =
24y? 4+ 1. This will correspond to solutions of (1) with Y even and X = 7 mod 12 (which,
as we shall see, do not exist).

Let M = < 152 g) and @ = ((1) —06 ) The matrix M leaves invariant the quadratic

form corresponding to matrix Q, i.e. MQM?T = Q. The nonnegative solutions of (1) are
given by (X, Y%) = (1,0)M* for nonnegative integers k, and Xy1 > Xp.



Now it is easy to show by induction that Y} is always even, while X; = 1 mod 12 for
even k and X = 5 mod 12 for odd k. The even k& > 2 produce the cases with i = 2, the
odd k produce the cases with ¢ = 3, and we never have ¢ = 4 or i = 5. Thus for j > 0

Cojpr = Xoj+ 1= (M) +1
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C2j+3 = 9 9
Now the generating function
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we find, after some simplification, that
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Similarly, we calculate the exponential generating function using an explicit form for
exp(tM).



