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1. Lambda calculus
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Lambda calculus: a very brief history*

*Source: Cardone & Hindley's "History of Lambda-calculus and Combinatory Logic"

Invented by Alonzo Church around 1928, published in 1932

Original goal: a foundation for logic, more natural than
Russell's type theory and Zermelo's set theory

One small problem: inconsistency!

Resolution: isolate an untyped λ-calculus for computation, and
a typed λ-calculus for logic

Since then: λ-calculus (both typed and untyped) has served as the
foundation and inspiration for  countless PLs and proof assistants

https://github.com/OpenLogicProject/photos


Untyped lambda calculus: definition sketch (part 1)

Formally, the set of lambda terms is closed under three constructs:

variablest ::= x, y, ...

| t(u)

| λx.t

application
abstraction

Quotient terms by "alpha-equivalence" (renaming of variables), e.g.:

λx.λy.x(y)(y)  ≡α  λf.λa.f(a)(a)

Distinguish free variables from bound variables: λy.λz.x(y(z))

free

bound

bound

https://github.com/OpenLogicProject/photos


Untyped lambda calculus: definition sketch (part 2)

Computation is encoded in the rule of beta-reduction:

(λx.t)(u)  →β  t[u/x]

Fact: the beta-normal form of a term is unique if it exists, but in
general it is uncomputable (Church, 1936).

Example: (λf.λa.f(a)(a)) (λx.x) y
→β (λa.(λx.x)(a)(a)) y
→β (λx.x)(y)(y)
→β y(y)

https://github.com/OpenLogicProject/photos


Fixed-point combinators and (non-)linearity

A fixed-point combinator is a closed term Y such that Yx ≡β x(Yx).

Observe the doubled uses of λ-bound variables x and y.  By contrast, a term
is said to be linear if every variable is used exactly once.

The first FP combinator in print (1937) was Turing's:

Y := (λx.λy.y(xxy))(λx.λy.y(xxy))

Fact: determining the beta-normal form of a linear term is complete for
polynomial time (Mairson, 2004).

https://github.com/OpenLogicProject/photos


Combinatory logic: an ancestor to λ-calculus

Open Logic ProjectPhotos of logicians obtained from the 

Moses Schönfinkel Haskell Curry

A var-free system,
invented by Schönfinkel

rebirthed by Curry.

(see credits on page)

https://github.com/OpenLogicProject/photos


Combinatory logic and untyped λ-calculus

There exists a basis of particularly powerful terms:

B := λx.λy.λz.x(yz)

C := λx.λy.λz.(xz)y

I := λx.x

K := λx.λy.x

W := λx.λy.(xy)y

The set {B,C,K,W,I} forms a basis meaning any (closed) λ-term is
in the closure of these terms under application and β-reduction.*

*In fact, I is redundant since W(K) →β I

The set {B,C,I} is a basis in the same sense for linear λ-terms.

https://github.com/OpenLogicProject/photos


Combinatory logic and types

The combinators can be assigned types corresponding to
basic axioms of implication:

B : (β ⊃ γ) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))

C : (α ⊃ (β ⊃ γ)) ⊃ (β ⊃ (α ⊃ γ))

I : α ⊃ α

K : α ⊃ (β ⊃ α)

W : (α ⊃ (α ⊃ β)) ⊃ (α ⊃ β)

More generally, terms can be seen as proofs in (purely implicative,
intuitionistic) logic, although not every term can be assigned a type
or the logic would be inconsistent (Y : (α ⊃ α) ⊃ α).

This forms part of the so-called "Curry-Howard correspondence".

https://github.com/OpenLogicProject/photos


2. What is a map?



Topological definition

map = 2-cell embedding of a graph into a surface*

considered up to deformation of the underlying surface.

*All surfaces are assumed to be connected and oriented throughout this talk
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Algebraic definition

map = transitive permutation representation of the group

considered up to G-equivariant isomorphism.

G = 



Combinatorial definition

map = connected graph + cyclic ordering of the
half-edges around each vertex (say, as given by
a planar drawing with "virtual crossings").
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≡ ≢

≡
graph

map

≡
graph

map

Graph versus Map



Some special kinds of maps

planar

bridgeless

3-valent



Four Color Theorem

The 4CT is a statement about maps.

every bridgeless planar map
has a proper face 4-coloring

By a well-known reduction (Tait 1880), 4CT is equivalent
to a statement about 3-valent maps

every bridgeless planar 3-valent map
has a proper edge 3-coloring



Map enumeration

From time to time in a graph-theoretical career one's thoughts turn
to the Four Colour Problem. It occurred to me once that it might be
possible to get results of interest in the theory of map-colourings
without actually solving the Problem. For example, it might be
possible to find the average number of colourings on vertices, for
planar triangulations of a given size.
 
One would determine the number of triangulations of 2n faces, and
then the number of 4-coloured triangulations of 2n faces. Then one
would divide the second number by the first to get the required
average. I gathered that this sort of retreat from a difficult problem to
a related average was not unknown in other branches of
Mathematics, and that it was particularly common in Number Theory.

W. T. Tutte, Graph Theory as I Have Known It



One of his insights was to consider rooted maps

Tutte wrote a germinal series of papers (1962-1969)

W. T. Tutte (1962), A census of planar triangulations. Canadian Journal of Mathematics 14:21–38
W. T. Tutte (1962), A census of Hamiltonian polygons. Can. J. Math. 14:402–417
W. T. Tutte (1962), A census of slicings. Can. J. Math. 14:708–722
W. T. Tutte (1963), A census of planar maps. Can. J. Math. 15:249–271
W. T. Tutte (1968), On the enumeration of planar maps. Bulletin of the American Mathematical Society 74:64–74
W. T. Tutte (1969), On the enumeration of four-colored maps. SIAM Journal on Applied Mathematics 17:454–460

Key property: rooted maps have
no non-trivial automorphisms

Map enumeration

bust by Gabriella Bollobás

https://www.youtube.com/watch?v=8Mi0STwhkqQ


Map enumeration

Ultimately, Tutte obtained some remarkably simple formulas
for counting different families of rooted planar maps, e.g.:

Mireille Bousquet-Mélou, Enumerative Combinatorics of Maps

For more on map-counting see:

(recorded lecture series)

Gilles Schaeffer, "Planar maps", in Handbook of Enumerative Combinatorics (ed. Bóna)

Bertrand Eynard, Counting Surfaces, Birkhäuser, 2016

https://www.youtube.com/watch?v=8Mi0STwhkqQ


3. How on Earth are
these topics related??



An innocent idea

In May 2014, for some reason* I thought it could be interesting to 

count linear lambda terms with the added restriction that terms are 

both β-normal and ordered (variables used not just once, but also in 

the order they are bound).

*related to certain categorical models of typing.



Counting β-normal ordered linear λ-terms

Let F(n,k) = # β-normal ordered terms w/n subterms and k free vars.
Let G(n,k) = same thing but restricting to terms that are not λs.

F and G satisfy the following mutual recurrence:

F(n,k) = F(n-1,k+1) + G(n,k)

G(n,k) = [n=1 & k=1] + ∑ G(m,j) * F(n-1-m,k-j)

Consider the sequence F(3*n+2,0) for n=0,1,...

m,j



λx.x

1



λx.x(λy.y)
λx.λy.x(y)

2



λx.x(λy.y(λz.z))
λx.x(λy.λz.y(z))
λx.x(λy.y)(λz.z)
λx.λy.x(y(λz.z))
λx.λy.x(λz.y(z))
λx.λy.x(λz.z)(y)
λx.λy.x(y)(λz.z)
λx.λy.λz.x(y(z))
λx.λy.λz.x(y)(z)

9



λx.x(λy.y(λz.z(λw.w)))
λx.x(λy.y(λz.λw.z(w)))
λx.x(λy.y(λz.z)(λw.w))
λx.x(λy.λz.y(z(λw.w)))
λx.x(λy.λz.y(λw.z(w)))
λx.x(λy.λz.y(λw.w)(z))
λx.x(λy.λz.y(z)(λw.w))
λx.x(λy.λz.λw.y(z(w)))
λx.x(λy.λz.λw.y(z)(w))
 
λx.x(λy.y)(λz.z(λw.w))
λx.x(λy.y)(λz.λw.z(w))
λx.x(λy.y(λz.z))(λw.w)
λx.x(λy.λz.y(z))(λw.w)
λx.x(λy.y)(λz.z)(λw.w)
λx.λy.x(y(λz.z(λw.w)))
λx.λy.x(y(λz.λw.z(w)))
λx.λy.x(y(λz.z)(λw.w))
λx.λy.x(λz.y(z(λw.w)))

λx.λy.x(λz.y(λw.z(w)))
λx.λy.x(λz.y(λw.w)(z))
λx.λy.x(λz.y(z)(λw.w))
λx.λy.x(λz.λw.y(z(w)))
λx.λy.x(λz.λw.y(z)(w))
λx.λy.x(λz.z)(y(λw.w))
λx.λy.x(λz.z)(λw.y(w))
λx.λy.x(λz.z(λw.w))(y)
λx.λy.x(λz.λw.z(w))(y)
 
λx.λy.x(λz.z)(λw.w)(y)
λx.λy.x(y)(λz.z(λw.w))
λx.λy.x(y)(λz.λw.z(w))
λx.λy.x(y(λz.z))(λw.w)
λx.λy.x(λz.y(z))(λw.w)
λx.λy.x(λz.z)(y)(λw.w)
λx.λy.x(y)(λz.z)(λw.w)
λx.λy.λz.x(y(z(λw.w)))
λx.λy.λz.x(y(λw.z(w)))

λx.λy.λz.x(y(λw.w)(z))
λx.λy.λz.x(y(z)(λw.w))
λx.λy.λz.x(λw.y(z(w)))
λx.λy.λz.x(λw.y(z)(w))
λx.λy.λz.x(λw.w)(y(z))
λx.λy.λz.x(y)(z(λw.w))
λx.λy.λz.x(y)(λw.z(w))
λx.λy.λz.x(y(λw.w))(z)
λx.λy.λz.x(λw.y(w))(z)
 
λx.λy.λz.x(λw.w)(y)(z)
λx.λy.λz.x(y)(λw.w)(z)
λx.λy.λz.x(y(z))(λw.w)
λx.λy.λz.x(y)(z)(λw.w)
λx.λy.λz.λw.x(y(z(w)))
λx.λy.λz.λw.x(y(z)(w))
λx.λy.λz.λw.x(y)(z(w))
λx.λy.λz.λw.x(y(z))(w)
λx.λy.λz.λw.x(y)(z)(w)

54





One piece of a larger puzzle

With Alain Giorgetti, we gave a bijection between β-normal ordered* 

linear λ-terms and rooted planar maps, albeit not so easy to interpret.

Independently (and a few years earlier), another group of people 

(Olivier Bodini, Danièle Gardy, and Alice Jacquot) studied linear 

lambda calculus coming from the completely different angle of 

analytic combinatorics, and found a natural bijection between general 

linear λ-terms and rooted 3-valent maps of arbitrary genus.

Looking at this pair of connections, one may wonder whether they 

form part of a bigger picture...and it turns out they do!

*our bijection went via "skew-ordered" terms, which is part of what made it difficult to interpret.



family of rooted maps family of lambda terms sequence OEIS

trivalent maps (genus g≥0)
planar trivalent maps
bridgeless trivalent maps
bridgeless planar trivalent maps

maps (genus g≥0)
planar maps
bridgeless maps
bridgeless planar maps

linear terms
ordered terms
unitless linear terms
unitless ordered terms

normal linear terms (mod ~)
normal ordered terms
normal unitless linear terms (mod ~)
normal unitless ordered terms

A062980
A002005
A267827
A000309

A000698
A000168
A000699
A000260

1,5,60,1105,27120,...
1,4,32,336,4096,...
1,2,20,352,8624,...
1,1,4,24,176,1456,...

1,2,10,74,706,8162,...
1,2,9,54,378,2916,...
1,1,4,27,248,2830,...
1,1,3,13,68,399,...

One piece of a larger puzzle

ordered non-ordered

λx.λy.λz.x(yz) λx.λy.λz.(xz)y

unitless

λx.λy.x(y)

non-unitless

λx.x(λy.y)

normal non-normal

λx.λy.(λz.xz)yλx.λy.x(λz.yz)
λx.λy.t ~ λy.λx.t

vs. vs.

vs.



4. Between linear λ-terms and
rooted 3-valent maps

(a bijection by Bodini et al 2013, as analyzed by Z 2016)



Idea (folklore*): representing λ-terms as graphs

A λ-term can be represented as a
"tree w/pointers", either with λ-nodes
pointing to the occurrences of bound
variables, or conversely with variables
pointing to their binders.  This idea
is especially natural for linear terms.

*The idea itself is natural and should probably be called folklore.  The earliest explicit description I know of (currently)
is in Knuth's "Examples of Formal Semantics" (1970), but it was developed more deeply and independently from different
perspectives in the PhD theses of C. P. Wadsworth (1971) and R. Statman (1974). 



@

λ
@

λ

λ-graphs as string diagrams

This idea can also be understood within the categorical framework
of "string diagrams", by interpreting λ-terms (after D. Scott) as
endomorphisms of a reflexive object

in a symmetric monoidal closed bicategory.



From linear λ-terms to rooted 3-valent maps

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)

(B) (C)



From linear λ-terms to rooted 3-valent maps

λx.λy.λz.x(yz) λx.λy.λz.(xz)y x,y ⊢ (xy)(λz.z) x,y ⊢ x((λz.z)y)

(B) (C)



From rooted 3-valent maps to linear λ-terms

T1 T2 T1

disconnecting
root vertex

connecting
root vertex

no
root vertex

Step #2: observe any such map must have one of the following forms:

Step #1: generalize to 3-valent maps w/∂ of "free" edges, one marked as root.



From rooted 3-valent maps to linear λ-terms

Step #3: observe this is exactly the inductive definition of linear λ-terms!

application abstraction variable

T1 T2 T1

⋮



An example



An example

connecting



An example



An example



An example



An example

disconnecting



An example



An example

λa.λb.λc.λd.λe.a(λf.c(e(b(df))))



Some tools for further exploring the bijection

George Kaye's λ-term visualiser galleryand

https://www.georgejkaye.com/lambda-visualiser/visualiser.html

https://www.georgejkaye.com/lambda-visualiser/gallery

Jason Reed's Interactive Lambda Maps Toy

https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html

https://www.georgejkaye.com/lambda-visualiser/visualiser.html
https://www.georgejkaye.com/lambda-visualiser/gallery
https://jcreedcmu.github.io/demo/lambda-map-drawer/public/index.html


5. From Lambda Calculus
to the Four Color Theorem
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λ
@

Typing as edge-coloring

Under this correspondence, typing is just an edge-coloring problem...

t : A ⊃ B

u : At(u) : B λx.t : A ⊃ B

x : At : B

...for a liberal notion of "color"



Typing as edge-coloring

(β ⊃ γ) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))

β ⊃ γ(α ⊃ β) ⊃ (α ⊃ γ)

β

γα ⊃ γ

α ⊃ β

α



Typing as edge-coloring

(α ⊃ (β ⊃ γ)) ⊃ (β ⊃ (α ⊃ γ))

α ⊃ (β ⊃ γ)β ⊃ (α ⊃ γ)

α

β ⊃ γ

γ

βα ⊃ γ



Typing in a group

Abstractly, types can be drawn from any algebraic structure satisfying
the laws of linear implication (essentially, the BCI axioms).

In particular, an abelian group! A ⊃ B := -A + B

In this case, a typing of a linear λ-term is the same thing as
a flow* over the corresponding 3-valent graph.

λ
@

B - A

AB B - A

AB

*Tutte, "A contribution to the theory of chromatic polynomials", 1954



Exercise

Let 𝕍 = ℤ₂×ℤ₂ be the Klein Four Group.

Prove: every ordered linear λ-term with no closed subterms has
a 𝕍-typing such that no subterm gets the type (0,0).



Exercise

(β ⊃ γ) ⊃ ((α ⊃ β) ⊃ (α ⊃ γ))

β ⊃ γ(α ⊃ β) ⊃ (α ⊃ γ)

β

γα ⊃ γ

α ⊃ β

α

Example:

α = (0,1)
β = (1,0)
γ = (1,1)



\d.\c.\b.a(b(c(d)))\a.\d.\b.a(b(c(d)))\c.\d.\b.a(b(c(d)))\b.\a.\c.a(b(c(d)))\d.\a.\c.a(b(c(d)))\a.\b.\c.a(b(c(d)))\d.\b.\c.a(b(c(d)))\a.\d.\c.a(b(c(d)))\b.\d.\c.a(b(c(d)))\b.\a.\d.a(b(c(d)))\c.\a.\d.a(b(c(d)))\a.\b.\d.a(b(c(d)))\c.\b.\d.a(b(c(d)))(d)))

\c.\a.a(\b.b(c))(d)\d.\a.a(\b.b(c))(d)\a.\c.a(\b.b(c))(d)\d.\c.a(\b.b(c))(d)\a.\d.a(\b.b(c))(d)\c.\d.a(\b.b(c))(d)\b.\a.a(\c.b(c))(d)\d.\a.a(\c.b(c))(d)\a.\b.a(\c.b(c))(d)\d.\b.a(\c.b(c))(d)\a.\d.a(\c.b(c))(d)\b.\d.a(\c.b(c))(d)\b.\a.a(b)(\c.c(d))c(d))

\d.\b.a(b)(\c.c(d))\a.\d.a(b)(\c.c(d))\b.\d.a(b)(\c.c(d))\b.\a.a(b)(\d.c(d))\c.\a.a(b)(\d.c(d))\a.\b.a(b)(\d.c(d))\c.\b.a(b)(\d.c(d))\a.\c.a(b)(\d.c(d))\b.\c.a(b)(\d.c(d))\c.\a.a(\b.b(c)(d))\d.\a.a(\b.b(c)(d))\a.\c.a(\b.b(c)(d))\d.\c.a(\b.b(c)(d)))(d))

\b.\a.a(\c.b(c)(d))\d.\a.a(\c.b(c)(d))\a.\b.a(\c.b(c)(d))\d.\b.a(\c.b(c)(d))\a.\d.a(\c.b(c)(d))\b.\d.a(\c.b(c)(d))\b.\a.a(\d.b(c)(d))\c.\a.a(\d.b(c)(d))\a.\b.a(\d.b(c)(d))\c.\b.a(\d.b(c)(d))\a.\c.a(\d.b(c)(d))\b.\c.a(\d.b(c)(d))\c.\a.a(\b.b(c(d)))(d)))

\d.\c.a(\b.b(c(d)))\a.\d.a(\b.b(c(d)))\c.\d.a(\b.b(c(d)))\b.\a.a(\c.b(c(d)))\d.\a.a(\c.b(c(d)))\a.\b.a(\c.b(c(d)))\d.\b.a(\c.b(c(d)))\a.\d.a(\c.b(c(d)))\b.\d.a(\c.b(c(d)))\b.\a.a(\d.b(c(d)))\c.\a.a(\d.b(c(d)))\a.\b.a(\d.b(c(d)))\c.\b.a(\d.b(c(d)))(d)))

\b.\a.a(b(\c.c(d)))\d.\a.a(b(\c.c(d)))\a.\b.a(b(\c.c(d)))\d.\b.a(b(\c.c(d)))\a.\d.a(b(\c.c(d)))\b.\d.a(b(\c.c(d)))\b.\a.a(b(\d.c(d)))\c.\a.a(b(\d.c(d)))\a.\b.a(b(\d.c(d)))\c.\b.a(b(\d.c(d)))\a.\c.a(b(\d.c(d)))\b.\c.a(b(\d.c(d)))\a.a(\c.\b.b(c)(d)))(d))

\c.a(\d.\b.b(c)(d))\a.a(\b.\c.b(c)(d))\d.a(\b.\c.b(c)(d))\a.a(\d.\c.b(c)(d))\b.a(\d.\c.b(c)(d))\a.a(\b.\d.b(c)(d))\c.a(\b.\d.b(c)(d))\a.a(\c.\d.b(c)(d))\b.a(\c.\d.b(c)(d))\a.a(\c.\b.b(c(d)))\d.a(\c.\b.b(c(d)))\a.a(\d.\b.b(c(d)))\c.a(\d.\b.b(c(d)))(d)))

The End

λ...or is it?


