[go: up one dir, main page]

login
A267478
Primes which are squares (mod 55).
1
5, 11, 31, 59, 71, 89, 179, 181, 191, 199, 229, 251, 269, 311, 331, 379, 389, 401, 419, 421, 449, 499, 509, 521, 599, 619, 631, 641, 661, 691, 709, 719, 751, 829, 839, 859, 881, 911, 929, 971, 991, 1021, 1039, 1049, 1061, 1109, 1171, 1181, 1259, 1279, 1291, 1301, 1321, 1409, 1439, 1489, 1499
OFFSET
1,1
COMMENTS
5, 11 and all primes congruent to 1, 4, 9, 14, 16, 26, 31, 34, 36, or 49 (mod 55). - Robert Israel, Jan 15 2016
MAPLE
S55:= {seq(x^2 mod 55, x=0..27)}:
select(t -> member(t mod 55, S55), [seq(ithprime(i), i=1..1000)]); # Robert Israel, Jan 15 2016
MATHEMATICA
Join[{5, 11}, Select[Prime[Range[250]], MemberQ[{1, 4, 9, 14, 16, 26, 31, 34, 36, 49}, Mod[#, 55]]&]] (* Harvey P. Dale, Jan 17 2022 *)
PROG
(PARI) select(p->issquare(Mod(p, 55))&&isprime(p), [1..1500]) \\ It would be more efficient to select only among primes, replacing [1..1500] by primes([1, 1500]), in which case the isprime() condition can be omitted from the selection function. But we wanted to provide a universally valid characteristic function in the 1st argument of select(). - M. F. Hasler, Jan 15 2016
CROSSREFS
Cf. A106904 and adjacent sequences.
Cf. A191036.
Sequence in context: A371670 A105910 A023259 * A280081 A057470 A038580
KEYWORD
nonn
AUTHOR
M. F. Hasler, Jan 15 2016
STATUS
approved