[go: up one dir, main page]

login
A266814
Decimal expansion of -sqrt(2)*arctan(sqrt(2)/5) + Pi*sqrt(2)/4.
3
7, 2, 0, 9, 0, 2, 9, 4, 9, 5, 1, 7, 4, 6, 5, 0, 9, 2, 8, 4, 1, 2, 4, 4, 8, 3, 5, 0, 1, 8, 5, 5, 8, 9, 0, 9, 6, 4, 8, 0, 9, 7, 4, 4, 5, 3, 6, 7, 6, 4, 8, 3, 4, 3, 0, 0, 7, 6, 9, 0, 3, 8, 3, 2, 3, 8, 5, 1, 6, 9, 3, 6, 0, 2, 9, 4, 8, 7, 5, 8, 2, 3, 8, 8, 5, 3, 4
OFFSET
0,1
COMMENTS
This constant is the packing density of a regular octahedron. That is, let S be a regular octahedron of edge length 2 and let B the part of S that lies within distance 1 of some vertex. Then this constant is the ratio of the volume of B to the volume of S.
LINKS
Thomas C. Hales, A proof of the Kepler conjecture. In: Annals of Mathematics 162 (2005), nr. 3, p. 1065-1185.
FORMULA
Equals -sqrt(2)*arctan(sqrt(2)/5) + Pi*sqrt(2)/4.
Equals (3*A093825 - A267040)/2.
EXAMPLE
0.7209029495...
MATHEMATICA
First@ RealDigits@ N[-Sqrt[2] ArcTan[Sqrt[2]/5] + 1/4 Pi Sqrt[2], 120] (* Michael De Vlieger, Jan 09 2016 *)
PROG
(PARI) -sqrt(2)*atan(sqrt(2)/5)+1/4*Pi*sqrt(2) \\ Altug Alkan, Jul 30 2018
(Magma) R:= RealField(); [-Sqrt(2)*Arctan(Sqrt(2)/5) + Pi(R)*Sqrt(2)/4]; // G. C. Greubel, Aug 16 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Martin Renner, Jan 09 2016
STATUS
approved