[go: up one dir, main page]

login
A266497
Binomial transform of A015128.
7
1, 3, 9, 27, 79, 225, 627, 1717, 4633, 12341, 32501, 84737, 218959, 561263, 1428287, 3610671, 9072367, 22668285, 56345835, 139382713, 343242533, 841713531, 2055944117, 5003148987, 12132552115, 29323810757, 70651867863, 169719163521, 406541986857, 971192810019
OFFSET
0,2
LINKS
FORMULA
a(n) ~ 2^(n-2) * exp(Pi*sqrt(n/2) + Pi^2/16) / n.
a(n) = [x^n] (1 + x)^n/theta_4(x), where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 20 2018
MATHEMATICA
A015128[n_]:=Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}];
Table[Sum[Binomial[n, k]*A015128[k], {k, 0, n}], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 30 2015
STATUS
approved