[go: up one dir, main page]

login
A266438
Total number of ON (black) cells after n iterations of the "Rule 23" elementary cellular automaton starting with a single ON (black) cell.
1
1, 4, 4, 11, 11, 22, 22, 37, 37, 56, 56, 79, 79, 106, 106, 137, 137, 172, 172, 211, 211, 254, 254, 301, 301, 352, 352, 407, 407, 466, 466, 529, 529, 596, 596, 667, 667, 742, 742, 821, 821, 904, 904, 991, 991, 1082, 1082, 1177, 1177, 1276, 1276, 1379, 1379
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectured g.f.: (-(1 + x)^(-2) + (-3 + 3*x - 2*x^2)/(-1 + x)^3)/2. - Michael De Vlieger, Dec 29 2015
Conjectures from Colin Barker, Dec 30 2015 and Apr 15 2019: (Start)
a(n) = (n^2+2*n-(-1)^n*(n+1)+3)/2.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4.
(End)
MATHEMATICA
rule=23; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc, k]], {k, 1, rows}] (* Number of Black cells through stage n *)
CROSSREFS
Cf. A266434.
Sequence in context: A107856 A212102 A168373 * A128499 A325859 A265206
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 29 2015
STATUS
approved