[go: up one dir, main page]

login
A266108
Expansion of Product_{k>=1} (1 + (x + x^2)^k).
5
1, 1, 2, 4, 9, 17, 33, 67, 133, 256, 488, 935, 1798, 3437, 6507, 12239, 22950, 42959, 80283, 149717, 278338, 515579, 952014, 1753899, 3225529, 5921773, 10852501, 19853341, 36254081, 66082021, 120233759, 218396940, 396114374, 717473628, 1297869159, 2344798633
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(k,n-k)*q(k), where q(n) is A000009.
a(n) ~ phi^(n+1/4) * exp(Pi*sqrt(phi*n/(3*sqrt(5))) + Pi^2/(120*phi)) / (4*3^(1/4)*5^(1/8)*n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
MATHEMATICA
nmax=40; CoefficientList[Series[Product[1 + (x+x^2)^k, {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Binomial[k, n-k]*PartitionsQ[k], {k, 0, n}], {n, 0, 40}]
CROSSREFS
Sequence in context: A302832 A007502 A088039 * A360303 A077931 A115451
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 21 2015
STATUS
approved