OFFSET
1,11
COMMENTS
A positive arch is defined as a top arch that starts at an odd-numbered vertex and ends at a higher even-numbered vertex.
For each value of n there is a square array with n^2 elements.
Rows are in order of decreasing number of components.
The sum of all the elements in each square array(n) = Catalan numbers C(n) A000108.
The sum of columns for array(n) = Semimeander components row(n) A046726.
The sum of the rows for array(n) = Narayana numbers T(n,k) A001263.
All semimeander solutions (k=1) for array n have positive arches = floor((n+2)/2).
EXAMPLE
For n=3: /\ /\
/\ /\ / \ //\\
/ \ / \ / \ // \\
/\ /\ /\ / /\ \ /\ /\ / /\ \ //\ /\\ // /\ \\
\ \\// / \ \ \/ / / \ \ \/ / / \\ \/ // \\ \/ //
\ \/ / \ \ / / \ \ / / \\ // \\ //
\ / \ \/ / \ \/ / \\// \\//
\/ \ / \ / \/ \/
\/ \/
p=3,k=2 p=2,k=1 p=2,k=1 p=1,k=2 p=2,k=3.
.
n=3 p\k 3 2 1 n=9 p\k 9 8 7 6 5 4 3 2 1
1: 0 1 0 1: 0 0 0 0 1 0 0 0 0
2: 1 0 2 2: 0 0 0 4 0 32 0 0 0
3: 0 1 0 3: 0 0 6 0 78 0 252 0 0
4: 0 4 0 72 0 446 0 654 0
5: 1 0 29 0 280 0 950 0 504
6: 0 4 0 72 0 446 0 654 0
7: 0 0 6 0 78 0 252 0 0
8: 0 0 0 4 0 32 0 0 0
9: 0 0 0 0 1 0 0 0 0
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Roger Ford, Dec 09 2015
STATUS
approved