[go: up one dir, main page]

login
A265499
Numbers n such that n*2^607 - 1 is prime.
0
1, 226, 273, 544, 675, 961, 1380, 1968, 2155, 2193, 2596, 3481, 3774, 4074, 4513, 4674, 4866, 4899, 5004, 5418, 5421, 5536, 5815, 5949, 6159, 6249, 6390, 6523, 6526, 6543, 7230, 7281, 7645, 7699, 7968, 8473, 8518, 8724, 8763, 8871, 9519, 9780, 9805
OFFSET
1,2
COMMENTS
The exponent of 2 in the expression, 607, is a Mersenne exponent.
EXAMPLE
n = 1 is a term since 2^607 - 1 is prime (the 14th Mersenne prime).
MATHEMATICA
Select[Range@ 12250, PrimeQ[# 2^607 - 1] &] (* Michael De Vlieger, Dec 09 2015 *)
PROG
(MATLAB)
if isprime(n*2^607-1)
disp(n)
end
(PARI) is(n)=ispseudoprime(n*2^607 - 1) \\ Anders Hellström, Dec 09 2015
(Magma) [n: n in [1..2*10^4] |IsPrime(n*2^607-1)]; // Vincenzo Librandi, Dec 10 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vardan Semerjyan, Dec 09 2015
STATUS
approved