[go: up one dir, main page]

login
A264918
Decimal expansion of constant z = Sum_{n>=1} {(3/2)^n} / 2^n, where {x} denotes the fractional part of x.
5
3, 9, 3, 1, 8, 8, 4, 7, 7, 0, 4, 9, 6, 4, 4, 3, 2, 4, 4, 9, 7, 2, 5, 8, 2, 1, 3, 1, 3, 8, 9, 0, 3, 8, 8, 5, 8, 5, 4, 8, 3, 9, 1, 4, 0, 7, 8, 8, 6, 6, 2, 8, 6, 9, 5, 3, 9, 2, 9, 3, 2, 4, 7, 5, 7, 5, 7, 8, 7, 7, 5, 8, 3, 3, 8, 9, 7, 4, 9, 8, 6, 6, 8, 1, 0, 9, 7, 6, 6, 6, 2, 0, 6, 1, 0, 1, 8, 5, 8, 8, 8, 0, 1, 3, 3, 3, 0, 0, 8, 0, 5, 9, 3, 2, 2, 6, 3, 1, 5, 3, 2, 6, 8, 0, 9, 0, 4, 7, 5, 0, 4, 9, 4, 2, 6, 6, 6, 1, 2, 1, 1, 4, 2, 4, 3, 3, 4, 9, 8, 4, 4, 3, 5, 8, 4, 7, 7, 5, 8, 5, 0, 6, 5, 5, 9, 3, 3, 7, 2, 5, 0, 9, 1, 4, 3, 2, 8, 8, 7, 7, 0, 5, 4, 3, 2, 2, 3, 1, 4, 0, 7, 7, 1, 7, 1, 7, 5, 9, 5, 3, 3, 3, 7, 7, 6
OFFSET
1,1
LINKS
FORMULA
z = Sum_{n>=1} (3^n mod 2^n) / 4^n = Sum_{n>=1} A002380(n) / 4^n.
3 - z = Sum_{n>=1} [(3/2)^n] / 2^n = Sum_{n>=1} A002379(n) / 2^n, where [x] denotes the integer floor function of x.
EXAMPLE
z = 0.39318847704964432449725821313890388585483914078866\
28695392932475757877583389749866810976662061018588\
80133300805932263153268090475049426661211424334984\
43584775850655933725091432887705432231407717175953\
33776901692614854937460993931094741172922114373160\
19617637538747813543456758934332723336245738884968...
INFINITE SERIES.
(1) z = 1/4 + 1/4^2 + 3/4^3 + 1/4^4 + 19/4^5 + 25/4^6 + 11/4^8 + 161/4^9 + 227/4^10 + 681/4^11 + 1019/4^12 +...+ A002380(n)/4^n +...
(2) 3 - z = 1/2 + 2/2^2 + 3/2^3 + 5/2^4 + 7/2^5 + 11/2^6 + 17/2^7 + 25/2^8 + 38/2^9 + 57/2^10 + 86/2^11 + 129/2^12 + 194/2^13 + 291/2^14 +...+ A002379(n)/2^n +...
where
3 - z = 2.60681152295035567550274178686109611414516...
CROSSREFS
Cf. A002379 ([(3/2)^n]), A002380 (3^n mod 2^n), A264919, A264920, A264921, A264922.
Sequence in context: A374242 A336501 A016674 * A091670 A375503 A201416
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Dec 03 2015
STATUS
approved