OFFSET
1,1
COMMENTS
Also, largest x such that Gamma(x+1) = x^3. In other words, the largest number whose cube and factorial coincide.
The equation Gamma(x) = x^2 has also negative solutions, one for each negative integer, increasingly closer to these integers: x[1] = -1.5259..., x[2] = -1.806544..., x[3] = -3.017901..., x[4] = -3.997382..., x[5] = -5.000333... etc. The distances from the integers show an interesting pattern, see A339167. - M. F. Hasler, Nov 25 2020
EXAMPLE
5.03672257058871109516917896...
MATHEMATICA
RealDigits[x /. FindRoot[Gamma[x] - x^2, {x, 5}, WorkingPrecision -> 120], 10, 100][[1]] (* Amiram Eldar, May 28 2021 *)
PROG
(PARI) solve(x=5, 6, gamma(x+1)-x^3)
(PARI) solve(x=5, 6, gamma(x)-x^2)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Franklin T. Adams-Watters, Nov 24 2015
STATUS
approved