[go: up one dir, main page]

login
A264406
Smallest palindrome of each distinct decimal type (A002113) in increasing order.
4
1, 11, 101, 111, 1001, 1111, 10001, 10101, 10201, 11011, 11111, 100001, 101101, 102201, 110011, 111111, 1000001, 1001001, 1002001, 1010101, 1011101, 1012101, 1020201, 1021201, 1022201, 1023201, 1100011, 1101011, 1102011, 1110111, 1111111, 10000001, 10011001, 10022001, 10100101, 10111101, 10122101, 10200201, 10211201, 10222201, 10233201, 11000011, 11011011, 11022011, 11100111, 11111111
OFFSET
1,2
COMMENTS
Only positive palindromes are considered.
The numbers N(n) of distinct types of n-digit palindromes, for n=1,2,..., are 1,1,2,2,5,5,15,15,... (A164904, n>=1). It is easy to see that N(2*n-1)=N(2*n), n>=1.
LINKS
EXAMPLE
The type corresponding to the term 1021201 has the form XYZXZYX, where X,Y,Z are distinct decimal digits, X>0.
CROSSREFS
Sequence in context: A193415 A263609 A333415 * A057148 A076289 A350346
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Dec 10 2015
EXTENSIONS
Two missed terms were found by Peter J. C. Moses, Jan 07 2016
STATUS
approved