OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(x)^3 / (f(-x^2) * f(x^3) * f(-x^6)) in powers of x where f() is a Ramanujan theta function.
Expansion of q^(1/3) * eta(q^2)^8 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)^3 * eta(q^6)^4) in powers of q.
Euler transform of period 12 sequence [ 3, -5, 2, -2, 3, -2, 3, -2, 2, -5, 3, 0, ...].
EXAMPLE
G.f. = 1 + 3*x + x^2 - 3*x^3 - x^4 + x^6 + 6*x^7 - 6*x^9 - 3*x^10 + ...
G.f. = 1/q + 3*q^2 + q^5 - 3*q^8 - q^11 + q^17 + 6*q^20 - 6*q^26 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^3 / (QPochhammer[ x^2] QPochhammer[ -x^3] QPochhammer[ x^6]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)^4), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 19 2015
STATUS
approved