[go: up one dir, main page]

login
A263519
T(n,k) = Number of (n+1) X (k+1) arrays of permutations of 0..(n+1)*(k+1)-1 filled by rows with each element moved a city block distance of 0 or 1, and rows and columns in increasing lexicographic order.
14
3, 7, 8, 15, 35, 23, 29, 160, 208, 66, 53, 660, 2076, 1198, 190, 93, 2651, 18369, 25968, 7022, 547, 159, 10350, 158109, 489294, 331130, 41035, 1575, 267, 39807, 1317780, 9051857, 13332096, 4213002, 240237, 4535, 443, 151463, 10791350, 162207955
OFFSET
1,1
COMMENTS
Table starts
.....3.......7.........15............29...............53..................93
.....8......35........160...........660.............2651...............10350
....23.....208.......2076.........18369...........158109.............1317780
....66....1198......25968........489294..........9051857...........162207955
...190....7022.....331130......13332096........529329240.........20339400914
...547...41035....4213002.....362159570......30867389241.......2543460828164
..1575..240237...53712998....9866744449....1805523575884.....319022980139204
..4535.1406038..684799391..268827612021..105637731091773...40028581755172441
.13058.8230727.8732881192.7327820172316.6184312882582853.5025951440933512579
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -a(n-3)
k=2: [order 10]
k=3: [order 35]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +a(n-4)
n=2: [order 10]
n=3: [order 29]
n=4: [order 92]
EXAMPLE
Some solutions for n=3 k=4
..0..1..7..8..9....0..1..7..8..9....0..1..2..3..4....0..1..2..4..9
..6..5..2..3..4...10..5..2..3..4....5..6..8..7..9....5..7..6..3..8
.10.12.11.13.19...11..6.12.13.14...15.10.13.12.14...10.12.11.14.13
.15.17.16.18.14...15.16.17.19.18...16.11.18.17.19...15.16.17.18.19
CROSSREFS
Column 1 is A147704(n+1).
Row 1 is A192960.
Sequence in context: A249435 A192120 A031404 * A105263 A242572 A136136
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 19 2015
STATUS
approved