[go: up one dir, main page]

login
Number A(n,k) of lattice paths starting at {n}^k and ending when k or any component equals 0, using steps that decrement one or more components by one; square array A(n,k), n>=0, k>=0, read by antidiagonals.
19

%I #16 Apr 25 2020 14:47:42

%S 1,1,1,1,1,1,1,3,1,1,1,7,13,1,1,1,15,157,63,1,1,1,31,2101,5419,321,1,

%T 1,1,63,32461,717795,220561,1683,1,1,1,127,580693,142090291,328504401,

%U 9763807,8989,1,1,1,255,11917837,39991899123,944362553521,172924236255,454635973,48639,1,1

%N Number A(n,k) of lattice paths starting at {n}^k and ending when k or any component equals 0, using steps that decrement one or more components by one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A263159/b263159.txt">Antidiagonals n = 0..20, flattened</a>

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 3, 7, 15, 31, ...

%e 1, 1, 13, 157, 2101, 32461, ...

%e 1, 1, 63, 5419, 717795, 142090291, ...

%e 1, 1, 321, 220561, 328504401, 944362553521, ...

%e 1, 1, 1683, 9763807, 172924236255, 7622403922836151, ...

%p s:= proc(n) option remember; `if`(n=0, {[]},

%p map(x-> [[x[], 0], [x[], 1]][], s(n-1)))

%p end:

%p b:= proc(l) option remember; `if`(l=[] or l[1]=0, 1,

%p add((p-> `if`(p[1]<0, 0, `if`(p[1]=0, 1, b(p)))

%p )(sort(l-x)), x=s(nops(l)) minus {[0$nops(l)]}))

%p end:

%p A:= (n, k)-> b([n$k]):

%p seq(seq(A(n,d-n), n=0..d), d=0..10);

%t g[k_] := Table[Reverse[IntegerDigits[n, 2]][[;;k]], {n, 2^k+1, 2^(k+1)-1}];

%t b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[k]}]];

%t a[n_, k_] := If[n == 0 || k == 0 || k == 1, 1, b[Table[n, {k}]]];

%t Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Apr 25 2020, after _Alois P. Heinz_ in A115866 *)

%Y Columns k=0+1, 2-10 give: A000012, A001850, A115866, A263162, A263163, A263164, A263165, A263166, A263167, A263168.

%Y Rows n=0-1 give: A000012, A255047.

%Y Main diagonal gives A263160.

%Y Cf. A210472, A225094, A227578, A227655, A229142, A229345, A262809.

%K nonn,tabl

%O 0,8

%A _Alois P. Heinz_, Oct 11 2015