[go: up one dir, main page]

login
A263105
Number of distinct cycles without repeated edges in the multigraph on 3 vertices, with n edges between each pair of vertices.
2
1, 33, 2916, 808300, 509131545, 605707523361, 1214620662420928, 3795417851074101456, 17444500147778706611145, 112823815631393432721650905, 991377088026896964421518306036, 11502248569873461404933124399742188
OFFSET
1,2
COMMENTS
Cycles have length at least 2, and may repeat vertices but not edges.
Cycles p,q are equivalent if the vertex-edge sequence of q can be made by rotating or reversing that of p.
LINKS
Simon R. Donnelly, Python program
Eric W. Weisstein, Multigraph
EXAMPLE
For n=2 the a(n) = 33 unique cycles' vertex-edge sequences are:
a0b1a, b2c3b, c4a5c;
a0b2c4a, a0b2c5a, a0b3c4a, a0b3c5a, a1b2c4a, a1b2c5a, a1b3c4a, a1b3c5a;
a0b2c3b1a, a0b3c2b1a, b2c4a5c3b, b2c5a4c3b, c4a0b1a5c, c4a1b0a5c;
a0b2c4a1b3c5a, a1b2c4a0b3c5a, a0b3c4a1b2c5a, a0b2c5a1b3c4a;
a0b2c4a5c3b1a, a1b2c4a5c3b0a, a0b3c4a5c2b1a, a0b2c5a4c3b1a;
b2c4a0b1a5c3b, b3c4a0b1a5c2b, b2c5a0b1a4c3b, b2c4a1b0a5c3b;
c4a0b3c4b1a5c, c5a0b3c4b1a4c, c4a1b3c4b0a5c, c4a0b4c3b1a5c.
PROG
(Python) See links.
CROSSREFS
Sequence in context: A358808 A111922 A136541 * A284072 A281444 A242019
KEYWORD
nonn,walk
AUTHOR
Simon R. Donnelly, Oct 09 2015
STATUS
approved