[go: up one dir, main page]

login
A262966
Expansion of phi(-q^3) / phi(-q^2) in powers of q where phi() is a Ramanujan theta function.
2
1, 0, 2, -2, 4, -4, 8, -8, 14, -16, 24, -28, 42, -48, 68, -80, 108, -128, 170, -200, 260, -308, 392, -464, 584, -688, 856, -1010, 1240, -1460, 1780, -2088, 2526, -2960, 3552, -4152, 4956, -5776, 6856, -7976, 9416, -10928, 12848, -14872, 17412, -20116, 23456
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^3)^2 * eta(q^4) / (eta(q^2)^2 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [0, 2, -2, 1, 0, 1, 0, 1, -2, 2, 0, 0, ...].
a(n) ~ (-1)^n * exp(sqrt(n/2)*Pi) / (2^(9/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 06 2015
EXAMPLE
G.f. = 1 + 2*q^2 - 2*q^3 + 4*q^4 - 4*q^5 + 8*q^6 - 8*q^7 + 14*q^8 - 16*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3] / EllipticTheta[ 4, 0, q^2], {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^4 + A) / (eta(x^2 + A)^2 * eta(x^6 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q^3)^2*eta(q^4)/(eta(q^2)^2*eta(q^6))) \\ Altug Alkan, Jul 31 2018
CROSSREFS
Sequence in context: A145810 A172148 A205478 * A034397 A200750 A344607
KEYWORD
sign
AUTHOR
Michael Somos, Oct 05 2015
STATUS
approved