[go: up one dir, main page]

login
A262858
Denominators of the Nielsen-Jacobsthal series leading to Euler's constant.
4
12, 420, 240240, 36100888223400, 236453376820564453502272320, 2225626015166235263233958200740039423756478781341512000
OFFSET
1,1
COMMENTS
gamma = 1 - 1/12 - 43/420 - 20431/240240 - 2150797323119/36100888223400 - ..., see formula (36) in the reference below.
LINKS
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
FORMULA
a(n) = n * Sum_{k = 2^n + 1 .. 2^(n + 1)} (-1)^(k + 1)/k.
EXAMPLE
Denominators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
MATHEMATICA
a[n_] := Denominator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
PROG
(PARI) a(n) = denominator(n*sum(k=2^n + 1, 2^(n + 1), (-1)^(k + 1)/k));
(Magma) [Denominator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
(GAP) List(List([1..6], n->n*Sum([2^n+1..2^(n+1)], k->(-1)^(k+1)/k)), DenominatorRat); # Muniru A Asiru, Oct 29 2018
CROSSREFS
Cf. A075266, A075267, A001620, A195189, A002657, A002790, A262235, A075266, A006953, A001067, A262856 (numerators of this series).
Sequence in context: A098602 A000897 A036687 * A123778 A347795 A129006
KEYWORD
frac,nonn
AUTHOR
STATUS
approved