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, Math. Aan., 77 (1916), 313-352. I. If # is a non-negative integer, define p,(n) by

‘ | > e =TT (4 —a")":
| otherwise define p,(n) as 0. (Here and in what follows ali snms will be extended

from 0 to = and all products from 1 to « unless otherwise stated.) pr(n) is
thus generated by the powers of x7/*¥(r), where
7(r) = exp(wir/12) I (1 — %", x = exp 2nir,

is the Dedekind modular form. In (1) it was shown that recurrence formulas
| for these coefficients depending on a parameter p, p a prime, exist for all
positive integral 7. The number of terms in these recurrence formulas 1s in
general a function of » and p, which is determined in (1). If r is even, G <~
< 26, it was shown in (2), (3) that three term recurrence formuias exist for
these cnefficients for p satisfving appropriate congruence conditions with
respect to 24 as modulus. These include, for example, Mordell's identity for

C L r(m) = pasln = 1):
r(np) = r(m)r(p) — p'r{n/p).

p,(n) bears some relation to the function g, (n), the number of representations

of 7 as a sum of 7 squares. If

Py

-~

T

n= 2, ¥(3x = x)

A=1
is a representation of n as a sum of r pentagons, then p,(n) is the excess of

the number of those representations of # in which
T

Zxk

1
- k==1

is even over those in which it is odd. Since the associated modular form is of 1

fractional dimension when 7 is odd and of integral dimension when 7 is even, \‘
' identities for odd 7 lie decper than identities for even r; and indeed quadratic |
reciprocity symbols appear. A good example is furnished by tne wdentity

(1) gs(np®) = {P +. 1— (:;f>}9’3("> — {p — (j>}93<%>

\
given by G. Pall in (7).
Received January 9, 1958. The preparation of this paper was supported (in part) by the
Office of Naval Research. C
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In this paper we study the coefficients p.(n) forrodd, 0 < 7 < 24. We shal]
demonstrate the existence of identities of type (1) for all primes p > 3, and
for p = 3 when 7 is a multiple of 3. Most of the discussion that follows de-
pends upon (1), and we assume familiarity with the contents of this paper.

After this paper was written the author received from J. H. van Lint a
copy of his dissertation, “Hecke Operators and Euler Products’ (October
1957, University of Utrecht), which contains a proof of formulas (5) and (11)
of the next section. (There are minor inaccuracies in van Lint’s expression for
formula (5).) van Lint’s proof is based upon properties of modular forms
while the author’s is based upon properties of modular Sfunctions. The methods
are quite different and yield different results in general

II. Let p be a prime. If g(r) is a function on To(p), we say that g(r) is
entire if it is regular in the interior of the upper r half-plane and has polar
singularities at most in appropriate uniformizing variables at the two parabolic

vertices 7 = 0, 7 of the fundamental region of I'y(p). We require the following
lemma:

Lesya 1. If g(7) is a function on To(p), then so is g(—1/p7). If in addition
g(7) is entire, then so is g(—1/pr).

Proof. The second statement is clear, since the substitution r/ — —-1/pr
permutes the parabolic points 7 = 0, i = and takes interior points of the upper
7 half-plane into interior points of the upper 7 half-plane. To prove the first,

let
a b
M= l:pc djl

0 —1
T”Z[p 0]

belong to T'y(p), and let

be the matrix of the transformation ' = —1/pr. Then
— a —c
TPMTp1= [__pb a] = 'ZL-[Oy

where M also belongs to T'y(p).

Suppose now that g(r) is a function on T'y(p), and put f(r) = g(—=1/p7)
= g(Tyr). Then f(Mr) = 2(T,M7) = g{MyTyr) = g(T,r) = Fir), so that f(r)
is also a function on I'y(p). The lemma is therefore proved. '

As in (1) we write T,g(7) = g(T,r).

Following the notation of (1), let p be a prime > 3, and Q a power of p.
Define

_ {p Q a square
‘T U otherwise,
~and set

e e —— T —————

e e e
B

Let
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is an entire n

By Lemma 1,
shown in (1)

We write #

- residues mod

LeEmMa 2.8
v- F(?’, P!

Proof. Put

Theh

Now

i

!

which implies

Thus we nee¢
shown by me
that

Transforming



-rodd, 0 <7 < 24, We shall
‘1) for all primes p > 3, and
e discussion that follows de-
the contents of this paper.

ived from J. H. van Lint a
{1 Euler Products” (October
roof of formulas (5) and (11)
s in van Lint's expression for
properties of modular forms

dular functions. The methods
-eneral.

n ro(p), we say that g(r) is
r v half-plane and ‘has polar
variables at the two parabolic
1(p). We require the following

ois g(—1/pr). If in addition
he substitution ' = —1/pr

ss interior points of the upper
alf-plane. To prove the first,

7. Then
e Mn’
), and put f(r) = g(—1/p7)

= g(T,7) = f(r), so that f(7)
fore proved.

1 > 3, and Q a power of p.

i iha— o S P—

—-

Let

Then if 7 is an integer, it is shown in (1) that th

n(p07)
n(er)

1 0
R = [——np 1]'

h(r) =

Q-1
F(T, b, Q'y T) = z h'r(RnT)
n=0

is an entire modular function on To(p). Define

Gr, p, Q; 1) = TL,F(U, b, Q; 7).
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e function

By Lemma 1, G(

shown in (1) that

We write 7:Q in a summation to

Glr, 9 Qi) = (20)™

€

Q-1

2

n=0

()

residues mod Q. We shall prove the following lemma:

LEMMA 2. Suppose that

F(r,p,Q;7) + G, b, Q5 7) =

. oot
F(r, p, Q;T) = ;0 g = nZ; g z:l) Enp-

Proof. Put
g = BT (R,7)
Then
Q-1
Now
n(PQRin) —
n(pRin)
which implies that

Q
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7, b, Q; 1) is also an entire modular function on To(p). Itis

,(T + 24n)
a\——F~ /-

indicate that # runs over a reduced set of

Q is a square, and put Q' = Q/p. Then

F(r, p, Qs p7) + G(r, £, Q3 p7)-

— {ZL(PQRnT)}r
n(pRnT ) ’

7(pQ'R.pT)
W(Rnp"') ’

F(r,p, Qi) = ZQ g, + F(r, p, Qs p7)-

Thus we need only consider S i@ En-

shown by means of the trans

that

Transforming this sum by means of t

formation formula for t

This sum is treated in (1), where it is

2 = Q" (p) 2 n’(%gﬂl) .
n'Q n'Q

he identity

L ——TE T
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% 5w = 2 o)~ & o)
we find easily that
20 &= G(rp, Qi p7) — G, p, Q7).
The lemma is thus proved.

The functions so defined are also entire modular functions on To(p) when
p = 3, ifrisa multiple of 3. We assume from now on thatrisodd,0 < r < 24;

" and that p is a prime such that p >3 when (r,3) = 1 and p > 2 when 3lr.

We put

2
Vz_(%l),#=[§],6=ru—ﬁui

and define

4 pzl(modﬁls
“"”{1' p =3 (mod4)"

LEMaa 3. Thefmzclion
f=Frp, 0570 + G, p,p;r)
5 constant.
Proof. From (3), formula (2.5.2) and (1), page 354 we have

@) Foroppir) =« ] (1 — 2" — &™)~ +

ap(l_r)/z H (]. . xn)—r Z (7’1/ ; n)p,(fl)x".

where @ = a, exp { —irr(p — 1)/4}, and

(5)

is the Legendre-Jacobi symbol of quadratic reciprocity; and

(3) Grppin) = p 7% [T (1 =27 3 p,(np + 8)".
Similarly, from (1, p. 354) we have (since rv < p?)

€ Gornp, 050 =p 7 IT A =a)7 2 polnp® + moa™

(We take this opportunity to correct an error in the second displayed formula
for T, F on page 354 of (1). The coefficient should be Q(pQ/e)=™2 instead of
p(pQ/e)~7") '

From Lemma 2 with Q = $? we have that
f=F(r, p,p; 1) + G(r, p, p*; pr),
which is regular at » = (= by formulas (2) and (4). In addition,

Iaf = F(rop b5 7) + G(r, p, p% 7)

so that (2) |
modular {u;

If we con
principal re
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1p)
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unctions on T'g(p) when
hatrisodd, 0 < r < 24;
= 1and p > 2 when 3|r.

— pu;

r)

34 we have

,‘i‘)p,(n)x".

.y; and

5 (np + 8)x".
)

1p” + rv)x™.

econd displayed formula

2 Q(pQ/e)~™ instead of

™),

In addition,

3 7)
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so that (2) and (4) imply that fis regular at + = 0 as well. Since f is an entire

“modular function on Ts(p), this implies that f is constant, proving the lemma.

If we consider the expansion of T,f in powers of x as in (1) we obtain our
principal result, by comparing coefficients of like powers of x:

THEeEOREM 1. For all integral n,

(5) pr(np® + 1) — () + p’—ﬁpr(" > ) =0,

where

Yo =€ — <L ; n)p(r'gma and ¢ = p,(rv) + (g’)p(’"””a.

If in this identity = is replaced by np -+ é = np + rv — pu,

(5

vanishes since p|rv — n and we obtain

CoROLLARY 1. Pui A = 2735 + rv. Then for all integral =,

6) p(np’ + 8) — cp,(np + ) + p"%m(” > “) = 0.
- r
This identity is equivalent to the statement that the functions 1, F(r, p, p; ),
F(r, p, p%; 7) are linearly dependent. Another expression for ¢, obtained by
choosing n = 0 in (6), is

We also have
COROLLARY 2. If n — rv is not divisible by p* then
vpr(npz + 7”) = 'anr(n)-

We go on now to some applications of Theorem 1. Suppose that » > 5.
Then v, = ¢ = p,(rv)(mod p), so that

(7) p-(np? + rv) = p(r)p.(n) (mod p),

We choose r = 11, p = 13 in (7) as a significant example. Then from 4),
p.(rv) = p1(77) = —16257 = 6 (mod i3), so thai

€8) | pu(18%n 4 77) = 6pu(n) (mod 13).
It is known (5; 8) that
(9) p(13n + 6) = 11py;(n) (mod 13).

Combining (8) and (9), we obtain the following congruence for the partition
function mod 13, already given in (5):

r > b.

S— e
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CoroLLARY 3. If # = 6 (mod 13), then
p(13%n — 7) = 6p(n) (mod 13).

We can also obtain a general congruence mod p from (7), similar to those
given in (5; 6). _

THEOREM 2. Suppose thatr > 5. Let q be an arbitrary integer, and set R =
gp? 4 r. Then for all integral n,
(10) pr(np? 4 rv) = p, (1) pey . (1) (mod p).

Proof. We have

Z Pg(n)x” = H (1 _ xﬂ)qzﬂ+r .

= H (1 _ xnp2)q(1 _ xn)r (mod p)
Thus .
palm) = 3 pu(k)pin — p%) (mod ).

Replace n by np? -+ rv. Since rv < p?, we obtain

pa(ng® + ) = Z pB)pr((n — B 4+ 1) (mod ).

Formula (7) now implies that

pr(np® + ) = p,(rv) ?;0 po(R)p:(n — k) (mod p),

so that pr(np? + r) = p,(ru);bﬁr(n) (mod p), which is just {10).
As another application we prove

THEOREM 3. For all odd n,
1) prs(53n® + g(# — 1)) =0.

Proof. The proof is by induction on the total number of prime factors of #.
Forn = 1, (11) states that $,5(53) = 0, which is actually the case (4). Suppose
(11) proved for all integers with not more than ¢ prime [actors. Let p be an
odd prime. Then if # has precisely ¢ prime factors, it will suffice to preve {11)
for pn. Put

a, = 53n° + g(n2 —1).
Then
5
Apn = Zbgan + g(pZ - 1),

and Theorem 1 implies (with 7 = 15) that pis(a,,) is linear in pis(a,) and
p15(a,,,). Now pis(a,) vanishes by the induction hypothesis, and so dovs

o
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p15(ansp) if pln. If p & n, however, a,, is not an integer (since 429 is square-
free) and so pis5(a.,,) vanishes in this instance as well. Thus p15(a,,) = 0 and
the proof is complete.

We now prove

THEOREM 4. Suppose that a is such that for the mod m, p.(a) = 0 (mod m).

v‘ Suppose further that 24a - r is square-free. Then

(12) prlan’ + o (n* = 1)) =0 (mod m),

where (n, 2) = 1 if 3jr and (n, 6) = 1 otherwise.

Proof. As in Theorem 3, the proof is by induction on the total number of
prime factors of n. If » = 1, (12) states that p,(e) = 0 (mod m), which is
true by hypothesis. Suppose (12) proved for all integers with not more than
¢t prime factors. Let p be a prime such that p > 3 when (r,3) = 1 and p > 2
otherwise. Then if 7 has precisely ¢ prime factors, it will suffice to prove (12)

for pn. Put :

A, = an® + é(# —1).

Then
—_ 42 RAVS I
Mn = e+ 55 (0" = 1),

and Theorem 1 implies that p,(),,) is linear in p,(\,) and p,(\,,»). Now p,(A;)
= 0 (mod m) by hypothesis, and the same is true for p,(A,,,) if pln. If ptn
however, N,/ is not at integer since 24a -+ r is square-free, and so #,(\,/,)
vanishes. Thus p,(A,,) =0 (mod m) in either case, and the proof of Theorem
4 is complete.

Theorem 4 can be strengthened slightly by discarding the condition that
24a + r be square-free and restricting # to be divisible only by primes p such
that p > 2 when 3|7, p > 3 when (r,3) = 1, and p* { 24a + .

If we choose 7 = 11, m = 13 and a = 6 we find from (4) that p.(a) = p..(6)
= —143 = 0 (mod 13), while 24a + r = 155 is square-free. Theorem 4
applies and we have

(13) pu6n’ + 5(n* — 1)) = 0 (mod 13), (n,6) = 1.
Using formula (9) once again, we obtain the following interesting congruence

for the partition function mod 13:

1 .
p(84n® — ﬂ(n2 — 1)) = 0 (mod 13),

Formula (14) is a Ramanujan congruence for the partition function, with
the difference that the terms form a quadratic, rather than an arithmetic,
progression.

(14) (n,6) = 1. |
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More gererally, we have

THEOREM 5. Suppose that pii(a) = 0 (mod 13), and that 24a + 11 is square-
free. Then '

(15) pulan® + %(# — 1)) = 0 (mod 13), {n,6) =1,
(16) . p((13a + 6)n* — 2%1(712 — 1)) = 0 (mod 13), (n,6) = 1.

The first few admissible a’s are 6, 10, 17, 18, 24, 27, 57, 68, 69, 74, 90, 95.
(This information is extracted from (4).) It is of interest to note that two

progressions
2, 11, , } 2, 11, 2 }
{am —i—24 n—1)¢, {azn -'{-24(7; 1)

{(13@1 4 6)n? — i(n*’ — 1)} , {(13(12 + 6)n® — 511(# - 1)}

or

have no integers in common, since 24a, + 11 and 24a; + 11 are square-
free. :

IIT. In this scction Table I gives p,(rv) for r odd, 5 < 7 < 23 and for
3 < p < 23. We exclude » = 1, 3 from the table since p,(n), ps(n) are known
explicitly. For p = 3 there is no entry unless r is a multiple of 3. Using Table 1
we can construct Table 11 of values of ¢, and we do so for 7 odd, 5 < 7 < 23

and for p = 3,5, 7. The values of p,(rv) were extracted from (4) and some -

TABLE 11
\< 3 5 7
r

5 -6 16
-7 66 ~176
9 —12 -210 —~1016
11 — 2604 3544
13 11730 50008
15 1836 3900 4 20432
17 1 14810 30 34528
19 —6 45150 —39 74432
21 53028 —55 56930 444 96424
23 232 45050 13229 77768

unpublished tables in the author’s possession giving the first 1000 coefficients
of p,(n) for 7 odd, 5 < r < 23. These were computed by means of a double
precision program on the IBM 704 of the National Bureau of Standards in
Washington, D.C.

et i
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