[go: up one dir, main page]

login
A262184
a(n) = Fibonacci(n)^2 - Fibonacci(n) + 1.
1
1, 1, 1, 3, 7, 21, 57, 157, 421, 1123, 2971, 7833, 20593, 54057, 141753, 371491, 973183, 2548813, 6674473, 17476581, 45758461, 119803971, 313661811, 821194993, 2149945057, 5628675601, 14736139057, 38579834307, 101003513911, 264430950213, 692289729561
OFFSET
0,4
COMMENTS
Subsequence of A002061.
FORMULA
a(n) = A000045(n)^2 - A000045(n) + 1.
G.f.: -(x^5+x^4-7*x^3+x^2+3*x-1) / ((x-1)*(x+1)*(x^2-3*x+1)*(x^2+x-1)). - Alois P. Heinz, Sep 15 2015
EXAMPLE
For n=2, a(n) = Fibonacci(n)^2 - Fibonacci(n) + 1 = 1^2 - 1 + 1 = 1.
MATHEMATICA
#^2-#+1&/@Fibonacci[Range[0, 30]] (* or *) LinearRecurrence[{4, -2, -6, 4, 2, -1}, {1, 1, 1, 3, 7, 21}, 40] (* Harvey P. Dale, Sep 29 2019 *)
PROG
(PARI) a(n) = fibonacci(n)^2 - fibonacci(n) + 1;
vector(30, n, a(n))
CROSSREFS
Sequence in context: A319558 A307251 A320803 * A091489 A374721 A375016
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Sep 14 2015
STATUS
approved