[go: up one dir, main page]

login
A261363
Triangle read by rows: partial row sums of Sierpinski's triangle.
7
1, 1, 2, 1, 1, 2, 1, 2, 3, 4, 1, 1, 1, 1, 2, 1, 2, 2, 2, 3, 4, 1, 1, 2, 2, 3, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 1, 2, 3, 4, 4, 4, 4, 4, 5, 6, 7, 8, 1, 1, 1, 1, 2, 2, 2, 2
OFFSET
0,3
COMMENTS
T(n,n) = number of distinct terms in row n = number of odd terms in row n+1 = A001316(n);
central terms, for n > 0: T(2*n,n) = A048896(n-1).
LINKS
EXAMPLE
. n | Sierpinski: A047999(n,*) | Partial row sums: T(n,*)
. ----+----------------------------+----------------------------
. 0 | 1 | 1
. 1 | 1 1 | 1 2
. 2 | 1 0 1 | 1 1 2
. 3 | 1 1 1 1 | 1 2 3 4
. 4 | 1 0 0 0 1 | 1 1 1 1 2
. 5 | 1 1 0 0 1 1 | 1 2 2 2 3 4
. 6 | 1 0 1 0 1 0 1 | 1 1 2 2 3 3 4
. 7 | 1 1 1 1 1 1 1 1 | 1 2 3 4 5 6 7 8
. 8 | 1 0 0 0 0 0 0 0 1 | 1 1 1 1 1 1 1 1 2
. 9 | 1 1 0 0 0 0 0 0 1 1 | 1 2 2 2 2 2 2 2 3 4
. 10 | 1 0 1 0 0 0 0 0 1 0 1 | 1 1 2 2 2 2 2 2 3 3 4
. 11 | 1 1 1 1 0 0 0 0 1 1 1 1 | 1 2 3 4 4 4 4 4 5 6 7 8
. 12 | 1 0 0 0 1 0 0 0 1 0 0 0 1 | 1 1 1 1 2 2 2 2 3 3 3 3 4 .
PROG
(Haskell)
a261363 n k = a261363_tabl !! n !! k
a261363_row n = a261363_tabl !! n
a261363_tabl = map (scanl1 (+)) a047999_tabl
CROSSREFS
Cf. A047999, A008949, A048896 (central terms), A001316 (right edge), A261366.
Sequence in context: A153907 A029306 A337511 * A341216 A116491 A131325
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Aug 16 2015
STATUS
approved