[go: up one dir, main page]

login
A261041
Number of partitions of subsets of {1,...,n}, where consecutive integers are required to be in different parts.
10
1, 2, 4, 10, 29, 97, 366, 1534, 7050, 35167, 188835, 1084180, 6618472, 42756208, 291120551, 2081922515, 15590248868, 121920095674, 993343650912, 8414029179365, 73953763887277, 673316834487162, 6340176007793060, 61657373569634586, 618445940056365121
OFFSET
0,2
COMMENTS
From Gus Wiseman, Nov 25 2019: (Start)
Conjecture: Also the number of set partitions of {1, ..., n + 1} where, if x and x + 2 belong to the same block, then so does x + 1. For example, the a(0) = 1 through a(3) = 10 set partitions are:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1},{2}} {{1},{2,3}} {{1},{2,3,4}}
{{1,2},{3}} {{1,2},{3,4}}
{{1},{2},{3}} {{1,2,3},{4}}
{{1,4},{2,3}}
{{1},{2},{3,4}}
{{1},{2,3},{4}}
{{1,2},{3},{4}}
{{1,4},{2},{3}}
{{1},{2},{3},{4}}
(End)
LINKS
Notamathematician et al., Generating function for A261041, MathOverflow, 2024.
FORMULA
From Max Alekseyev, Sep 08 2024: (Start)
a(n) = Sum_{k=0..n} A000110(k) * Sum_{j=0..[(n-k)/2]} binomial(k+j-1,j).
G.f.: 1/(1-x) * Sum_{k>=0} A000110(k) * (x/(1-x^2))^k. (End)
EXAMPLE
For n=3 the a(3) = 10 partitions are {}, 1, 2, 3, 1|2, 13, 1|3, 2|3, 13|2, 1|2|3.
From Gus Wiseman, Nov 25 2019: (Start)
The a(0) = 1 through a(3) = 10 set partitions:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1},{2}} {{3}}
{{1,3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1,3},{2}}
{{1},{2},{3}}
(End)
MAPLE
g:= proc(n, l, t) option remember; `if`(n=0, 1, add(`if`(l>0
and j=l, 0, g(n-1, j, `if`(j=t, t+1, t))), j=0..t))
end:
a:= n-> g(n, 0, 1):
seq(a(n), n=0..30);
MATHEMATICA
g[n_, l_, t_] := g[n, l, t] = If[n==0, 1, Sum[If[l>0 && j==l, 0, g[n-1, j, If[j==t, t+1, t]]], {j, 0, t}]]; a[n_] := g[n, 0, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 04 2017, translated from Maple *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Length[Select[Join@@sps/@Subsets[Range[n]], !MemberQ[#, {___, x_, y_, ___}/; x+1==y]&]], {n, 0, 6}] (* Gus Wiseman, Nov 25 2019 *)
PROG
(PARI) a261041(n) = sum(k=0, n, sum(j=0, k, stirling(k, j, 2)) * sum(j=0, (n-k)\2, binomial(k+j-1, j))); \\ Max Alekseyev, Sep 08 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 09 2015
STATUS
approved