[go: up one dir, main page]

login
A260998
Maximal size of a subset of Z_n with distinct sums of pairs (of distinct elements).
4
1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
OFFSET
1,2
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..254
Fausto A. C. Cariboni, S_2-sets that yield a(n) for n = 2..254, Mar 24 2018.
H. Haanpaa, A. Huima and Patric R. J. Östergård, Sets in Z_n with Distinct Sums of Pairs, in Optimal discrete structures and algorithms (ODSA 2000). Discrete Appl. Math. 138 (2004), no. 1-2, 99-106. [Annotated scanned copies of four pages only from preprint of paper]
H. Haanpaa, A. Huima and Patric R. J. Östergård, Sets in Z_n with Distinct Sums of Pairs, in Optimal discrete structures and algorithms (ODSA 2000). Discrete Appl. Math. 138 (2004), no. 1-2, 99-106.
FORMULA
By the pigeonhole principle, C(a(n),2) <= n, yielding upper bound a(n) <= floor((1+sqrt(8*n+1))/2). - Rob Pratt, Nov 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 10 2015
EXTENSIONS
a(1)-a(90) from H. Haanpaa, A. Huima and Patric R. J. Östergård (see link), Nov 08 2000
a(1)-a(90) confirmed by Fausto A. C. Cariboni, Nov 09 2017
STATUS
approved