OFFSET
1,1
COMMENTS
Motivated by the fact that n+(17-n)^2 = 1+16^2, 2+15^2, ..., 16+1^2, 17+0^2, 18+1^2, 19+2^2, ..., 32+15^2 are all prime. This has an explanation through Heegener numbers, similar to Euler's prime-generating polynomial, cf. A002837 and related crossrefs.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
MAPLE
remove(t -> isprime(t+(17-t)^2), [$1..200]); # Robert Israel, May 02 2017
MATHEMATICA
Select[Range[200], !PrimeQ[# + (17 - #)^2] &] (* Vincenzo Librandi, Nov 16 2015 *)
PROG
(PARI) for(n=1, 999, isprime(n+(17-n)^2)||print1(n", "))
(Magma) [n: n in [1..180] | not IsPrime(n+(17-n)^2)]; // Vincenzo Librandi, Nov 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Nov 15 2015
STATUS
approved